
Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 39

SELECTING THE RIGHT MICROCONTROLLER UNIT

Takawira F., Dawoud D.S.
University of Natal University of Natal

Durban, South Africa
email ftakaw@nu.ac.za , dawoudd@nu.ac.za

Abstract:

Selecting the proper microcontroller unit (MCU) for a given application is one of the critical
decisions which control the success or failure of the task. There are numerous criteria to consider
when choosing an MCU, or in general the processor technology. This paper is numerating and
explaining most of the metrics to consider during the phase of selecting the right MCU. It
presents an outline of the thought guiding this decision.

Keywords: Microcontroller Unit (MCU), process technology

1. Introduction –

1.1 Technologies Involved in
Design Process

We can define technology as a manner of
accomplishing a task, especially using technical
processes, methods, or knowledge. Three types
of technologies are central to embedded system
design:
i. Design technologies: Design technology
involves the manner in which we convert our
concept of desired system functionality into an
implementation.
ii. IC technologies: Every processor must be
eventually be implemented on an integrated
circuit (IC). IC technology involves the manner
in which we map a digital (gate-level)
implementation onto an IC. IC technologies
differ by how customized the IC is for particular
design. In other words it differs from one
another by who is responsible to connect the
three groups of layers of any IC; the bottom
layers or the transistor layers, the middle layers
or the logic components layer and the top layers
that connect these components with wires. Three
IC technologies can be identified.
a. Full-custom/VLSI: All the layers are
optimized for a particular embedded system’s
implementation. Normally it has very high cost,
but gives excellent performance with small size

and power. Such technology is usually used only
in high-volume or extremely performance
critical applications.
b. Semicustome Application-specific IC (ASIC):
In ASIC technology, the bottom layers are fully
built, leaving us to finish the upper layers. The
gate array and standard cell are examples of this
IC technology.
c. Programmable Logic Device (PLD): In this
technology, all the layers already exist. The
layers
implement a programmable circuit. The
programming that takes place may consist of
creating or
destroying connections between wires that
connect gates, either by blowing a fuse, or
setting a bit
in a programmable switch. PLA, PAL and
FPGA are the most popular types of PLD
technology.
The designer by using some equipment and IC
technology is independent from processor
technology; any type o processor can be mapped
to any type of IC technology.
iii. Processor technologies: relates to the
architecture of the computation engine used to
implement a system's desired functionality.
Three processor technologies can be identified;
use of general-purpose processor (software
solution), use of single-purpose processor
(hardware solution), and use of application
specific processor (e.g. use of microcontroller).

Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 39

Any of the above mentioned three processor
technologies can be used to implement any task.
It is the job of the designer to select the
processor that optimizes some design metrics.

The subject of this paper is the selection of the
right processor technology that can be used to
implement a given task. For this reason, the next
three subsections are used to highlight the three
processor technologies and the design metric
benefits/drawbacks of each technology. In
section-2 we present the design metrics that can
be used to quantify the suitability of the selected
processor technology. In section-3 we present an
outline of thought process guiding the designer
to select the optimum microcontroller unit
(MCU)

1.2 Processor Technologies
Three technologies can be identified [1-2]:
1.2.1 General-Purpose Processors –
Software Solution
This is the case of designing a microprocessor-
based embedded system. The microprocessor, by
definition, is a programmable device that is
suitable for a variety of applications. It has a
general datapath. The datapath is general enough
to handle a variety of computations, so such a
datapath typically has a large register file and
one or more general-purpose arithmetic-logic
units (ALUs). An embedded system designer,
however, need not be concerned about the
design of a general-purpose processor. An
embedded system designer simply uses a
general-purpose processor, by programming the
processor’s memory to carry out the required
functionality.
Many people refer to this part of an
implementation as the "software" portion. Using
a general-purpose processor in an embedded
system may result in several design metric
benefits. Time-to-market and design costs are
low because the designer must only write a
program but not do
any digital design. Flexibility is high because
changing functionality requires changing only
the program.

Unit cost may be low. Performance may be fast
for computation-intensive applications, if using

a fast processor, due to advanced architecture
features and leading-edge IC technology.
However, there are also some design-metric
drawbacks. Performance may be slow for certain
applications, especially in case of real-time
systems. Size and power may be large due to
unnecessary processor hardware.

1.2.2. Single-Purpose Processors –
Hardware Solution
A single-purpose processor is a digital circuit
designed to execute exactly one program. An
embedded system designer may create a single-
purpose processor by designing a custom digital
circuit. Alternatively, the designer may purchase
a predesigned single-purpose processor. Many
people refer to this part of the implementation
simply as the "hardware" portion, although even
software requires a hardware processor on which
to run. Other common terms include
coprocessor, accelerator, and peripheral. The
datapath of the single-purpose processor
contains only the essential components to fulfil
the task. Since the processor only executes this
one task, it is possible to hardwire the program’s
instructions directly into the control logic and
use a state register to step through those
instructions, so no program memory is
necessary.

The use of a single-purpose processor in an
embedded system results in several design-
metric benefits and drawbacks, which are
essentially the inverse of those for general-
purpose processors. Performance may be fast,
size and power may be small, and unit cost may
be low, while design time and design costs may
be high, flexibility low, unit cost high for small
quantities, and performance may not match
general-purpose processors for some
applications.

1.2.3.Application-Specific Processors

An application-specific instruction-set processor
(ASIP) can serve as a compromise between the
other processor options. An ASIP is a
programmable processor optimized for a
particular class of applications having common
characteristics, such as embedded control,

Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 40

digital-signal processing, or
telecommunications.
The datapath of such a processor is optimized
for the application class, perhaps adding special
functional units for common operations and
eliminating other infrequently used units.
Using an ASIP in an embedded system can
provide the benefit of flexibility while still
achieving good performance, power, and size.

Microcontrollers (MCU) and digital signal
processors (DSP) are two well-known types of
ASIPs that have been used for several decades.
A microcontroller is a microprocessor that has
been optimized for embedded control
applications. Such applications typically monitor
and set numerous single-bit control signals but
do not perform large amounts of data
computations. Thus, microcontrollers tend to
have simple datapaths that excel at bit-level
operations and at reading and writing external
bits. Furthermore, they tend to incorporate on
the microprocessor chip several peripheral
components common in control applications,
like serial communication peripherals, timers,
counters, pulse-width modulators, and analogue-
digital converters, all of
which will be covered in a later chapter. Such
incorporation of peripherals enables single-chip
implementations and hence smaller and lower-
cost products.

1.3 Selection Process

The process of selecting the right MCU goes
through the following steps.
Step 1: Choose the right processor technology:
The goal of this step is to select one of the three
processor technologies. The selection is based
on the system requirements and the strengths
and weaknesses of each technology.
Step 2: Define the System Requirements: If you
decided to use MCU, the designer must answer
the following question “What does the MCU
need to do in my system?” The answer to this
simple question dictates the required MCU
features for the system and, thus, is the
controlling agency in the selection process.
Step 3: Prepare a List of all MCUs candidate:
Conduct a search for MCUs which meet all of
the system requirements. This usually involves

searching the literature and also consultations.
This step considered to be successful, if the
search results in more than one MCU fulfil all
the system requirements. If this is so, the
designer goes to the next step. If this step failed
to find any MCU that fulfill the requirement, the
designer has to go back to step 1 and selects
another processor technology.
Step 4: Finalize the Selection: Attempt to
reduce the list of the acceptable MCUs to a
single choice.

In the following sections we are going to discuss
in details the four steps. The case if step 3 failed
to find single MCU that fulfill all the system
requirements will be discussed at the last
section.

2. Choosing the Right Processor
Technology

The system analysis phase of the project will
result in identifying the subsystems required to
implement the given task and also the function
and the specifications of each subsystem. As a
matter of fact any of the above mentioned three
processor technologies can be used to implement
any of the subsystems. With each processor
technology has its own strength and weakness, it
is important to quantify the suitability of each
technology to implement the subsystems. In
most applications the following metrics can be
used to quantify the suitability of processor
technology (accordingly, they are needed to be
considered before selecting the processor
technology) [3-5]:

Cost: In the case of using off the shelf products
for the implementation of the system, this metric
represents the cost of the used ICs, e.g., the cost
of the selected MCU together with the
supporting ICs that may be needed to fulfil the
system requirements. In the case of designing
special hardware, the cost will consist of two
parts: the nonrecurring engineering cost (NRE)
(the “first silicon” cost including the research
and development cost), and the cost of
manufacturing the unit.

Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 41

Performance: The execution time of the system
or the processing power. It is usually taken to
mean the time required to complete a task
(latency or response time), or as the number of
tasks that can be processed per unit time
(throughput). Factors which influence
throughput and latency include the clock speed,
the word length, the number of general purpose
registers, the instruction variety, memory speed,
programming language used, and the availability
of suitable peripherals. Size: The physical space
required by the system, often measured in bytes
for software, and number of gates or transistors
for hardware. In case of using off the shelf
products (as in case of using MCU or MPU), the
size is the physical area required to
accommodate the sockets of the used ICs (the
footprint).
Power: The amount of power consumed by the
system, which may determine the lifetime of a
battery, or the cooling requirements of the IC,
since more power means more heat.
1. Heat generation is a primary enemy in
achieving increased performance. Newer
processors are
larger and faster, and keeping them cool can be a
major concern.
2. Reducing power usage will be the primary
objective in case of designing a project that
needs the components to be crammed into small
space. Such applications are very sensitive to
heat
problems.
3. With millions of PCs in use, and sometimes
thousands located in the same company, the
desire to conserve energy has grown from a non-
issue to a real issue in the last five years.
4. Power consumption has an impact on
everything from cooling method selection to
overall system reliability.
Flexibility: The ability to change the
functionality of the system without incurring
heavy additional cost.
Software is typically considered very flexible.
Generally speaking, single chip MCU are not
very flexible in use compared with single chip
microprocessor. The latter, if based on a
standardised bus, can be reconfigured by
swapping peripherals and altering input-output
routine. The ultimate in flexibility is probably

achieved through the use of general-purpose
processor.
Reliability: Reliability is an attribute of any
computer-related component (software,
hardware, or a network, for example) that
consistently performs according to its
specifications. It has long been
considered one of three related attributes that
must be considered when making, buying, or
using a computer product or component.
Reliability, availability, and serviceability -
RAS, for short – are considered to be important
aspects to design into any system. In theory, a
reliable product is totally free of technical errors;
in practice, however, vendors frequently express
a product’s reliability quotient as a percentage.
Evolutionary products (those that have evolved
through numerous versions over a significant
period of time) are usually considered to become
increasingly reliable, since it is assumed that
bugs have been eliminated in earlier releases.
Software bugs, instructions sensitivity, and
problems that may arise due to durability of the
EEPROM and Flash memories (The nature of
the EEPROM architecture, limits the number of
updates that may be reliably performed on a
single location – this is called the durability of
the memory. At least 10,000 updates are
typically possible for EEPROM and 100 updates
for flash memory), are some of the possible
reasons of the failure of embedded systems.

Reliability of a system depends on the number
of devices used to build the system. As the
number of units used increases, the probability
of error (or failure) increases which means lower
reliability. This is why the microcontroller-based
systems are, generally, more reliable than
microprocessor-based systems.
. Availability - Second source suppliers: Most of
the major microcontrollers and microprocessors
are now made by more than one manufacturer
(Siemens and Philips are the biggest
manufacturers for Intel 8051 family).
. Serviceability - Manufacturer’s support:
Manufacturer’s support covers the provision of a
range of services from the development system
and its associated software through the
documentation,
maintenance of the development system and
providing answers to technical queries.

Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 42

Maintainability: The ability to modify the
system after its initial release, especially by
designers who did not originally design the
system.
Range of complementary hardware: For some
applications the existence of a good range of
compatible ICs to support the
microcontroller/microprocessor may be
important.
Special environmental constraints: The
existence of special requirements, such as
military specifications or minimum physical size
and weight, may well be overriding factors for
certain tasks. In such cases the decision is often
an easy one.
Ease of use: This will affect the time required to
develop, to implement, to test it, and to start
using the system. These three factors - design
time, manufacturing time, and testing time- are
the main factors defining the time-to-market
merit which is very important if the system is
designed for commercial use.
In commercial applications, introducing an
embedded system to the marketplace early can
make a big difference in the system’
profitability, since market windows for product
are becoming quit short. This is very important
factor because the time-to-market factor defines
the profitability.
Software Support: Newer, faster processors
enable the use of the latest software. In addition,
new
processors such as the Pentium with MMX
Technology, enable the use of specialized
software not usable on earlier machines. Easier
language means shorter time to learn and better
maintainability
Motherboard Support: The processor you decide
to use in your system will be a major
determining factor in what sort of chipset you
must use, and hence what motherboard you buy.
The motherboard in turn dictates many facets of
your system's capabilities and performance.
Correctness: Our confidence that we have
implemented the system's functionality
correctly. We can check the functionality
throughout the process of designing the system,
and we can insert test circuitry to check that
manufacturing was correct.
Safety: The probability that the system will not
cause harm.

Metrics typically compete with one another;
Improving one often leads to worsening of
another. For example, if we reduce an
implementation’s size, the implementation’s
performance, power consumption and NRE may
suffer. Keeping this in mind and also the fact
that each processor technology has its own
metrics strength and weakness, the key
embedded system design challenge is the
simultaneous optimization of competing design
metrics.
To optimize the system under design, it is the
job of the designer to study the rule of each
subsystem within the complete frame of the
system, and from here he can identify the most
critical metrics that optimize the subsystem.
Based on that, the designer can define the most
suitable technology that he is going to use to
implement each subsystem. Accordingly, this
phase will determine the subsystems that the
designer is recommending the use of MCU for
implementation and also the requirements from
each MCU. The complete list of requirements
must cover all (or the maximum possible
number) the metrics mentioned above. For
example, it must cover the requirements from
hardware and software resources, performance,
interfacing
with other subsystems, power supply
specifications, etc.

3. What does the MCU need to do in
the system?

In this section we present an outline of the
thought process guiding the designer to prepare
a complete list of the system requirements. This
represents the most important step towards
finalizing the selection process.
The proposed way takes the form of questions to
be answered by the designer. Some of the
questions that the designer has to ask and to find
for them answer are:

3.1 Questions related to the system
hardware requirements:

All MCUs have on-chip resources to achieve a
higher level of integration and reliability at a
lower cost. An on-chip resource is a block of

Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 43

circuitry built into the MCU which performs
some useful function under control of the MCU.
Built-in resources increase reliability because
they do not require any external circuitry to be
working for the resource to function. They are
pre-tested by the manufacturer and conserve
board space by integrating the circuitry into the
MCU. The on-chip resources defer from one
MCU to another. Then it is very important in the
analysis phase to define exactly the system
hardware requirements to be able to select the
proper MCU. Failing to get an MCU that fulfill
all the system hardware requirements means one
of two possibilities:
1. To study whether the budget and the available
space constraints are going to allow you to select
the nearest suitable MCU and support it with
additional ICs, to fulfill the system
requirements, or not?
2. The possibility of going to another processor
technology (e.g. use of microprocessor or use of
single-purpose processor).
Some of the questions to be asked and answer
are:
What peripheral devices are required?
How many devices/bits (I/O pins) need to be
controlled? Among the many possible types of
I/O devices to be controlled/monitored are RS-
232C terminals, switches, relays, keypads,
sensors (temperature, pressure, light, voltage,
etc.), audible alarms, visual indicators(LCD
displays, LEDs), analog-to-digital (A/D), digital-
to-analog (D/A), liquid crystal display drivers(
LCD), and vacuum fluorescent display drivers
(VFD).
What is the expected capacity of the ROM and
RAM that are required to store the programs and
the data?
. How many timers the application needs?
Timers include both real-time clocks and
periodic interrupt timers.
What is the range and resolution of the timer?
Also consider if your system needs any
subfunctions, such as timer compare and/or
input capture lines.
Is your application needs some special resources
as internal/external bus capability, computer
operating properly (COP) watchdog system,
clock operating properly detection, selectable
memory configurations, and system integration
module (SIM).The SIM replaces the external

"glue" logic usually required to interface to
external devices via chips elect pins.
Is your application needs special arithmetic
hardware resources such as multiply, divide, and
table lookup/interpolate?
What is the word length? MCUs generally can
be classified in to 8-bit,16-bit, and 32-bit groups
based upon the size of their arithmetic and index
register(s). The following questions must be
answered before deciding about the word length:
a. Is a lower-cost 8 -bit MCU able to handle the
requirements of the system, or is a higher-cost
16- bit or 32-bit MCU required?
b. Can 8-bit software simulation of features
found on the 16-bit or 32-bit MCUs permit using
the
lower-cost 8-bit MCU by sacrificing some code
size and speed? For example, can an 8 -bit MCU
be used with software macros to implement 16-
bit accumulator and indexing operations?
These questions are directly related to the choice
of implementation language (high-level versus
assembler).

3.2 Questions related to the software
(instruction set) requirements:
The instruction set, registers, addressing modes,
etc., of each MCU should be considered
carefully, as they play critical roles in the
capability of the system. Some of the questions
to be answered are:
Is the application to be bit manipulating or
number crunching? Remember that bit
manipulation
instructions (bit set, bit clear, bit test, bit change,
branch on bit set, branch on bit clear) allow
easier implementation of controller applications.
Once data is received, how much manipulation
is required? Is the system to be driven by
interrupt? Polled, or human responses?
Which implementation language are you going
to use?
As mentioned before, the choice of
implementation language (high-level versus
assembler) can greatly affect system throughput,
which can then dictate the choice of 8-,16-, and
32- bit architectures. System cost restraints may
override this.

Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 44

Do you need any special instructions to be
available which could be used in your system,
such as
multiply, divide, and table lookup/interpolate?
Do you need the instruction set to include
instructions to handle low-power modes for
battery
conservation, such as stop low-power stop,
and/or wait?
How about big field instructions? In other
words, do you prefer MCU with Long
Instruction Word
(LIW)? Remember that the real measure of
performance is how many clock cycles the
system takes to complete the task in hand, not
how many instructions were executed.
What are the recommended addressing modes?

3.3 Questions related to the
performance:

As mentioned before, the performance can be
measured by the time required to complete a
task. One of the factors which influence
throughput is the clock speed. Clock speed, or
more accurately bus speed, determines how
much processing can be accomplished in a given
amount of time by the MCU.
Some MCUs have a narrow clock speed range,
whereas others can operate down to zero.
Sometimes a specific clock frequency is chosen
to generate another clock required in the system,
for example, for serial baud rates. In general,
computational power, power consumption, and
system cost increase with higher clock
frequencies. System costs increase with
frequency because not only does the MCU cost
more, but so do all the support chips required,
such as RAMs, ROMs, PLDs (programmable
logic device), and bus drivers.
Concerning the performance, some of the
questioned that must be answered are:
Is it a real-time application, and if so, are you
going to build or purchase a real-time kernel
program or may be a public domain version will
suffice?
What is the expected CPU core throughput?
What is the CMU bus speed? Or what is the
clock speed?
For serial ports, what is the data rate?

3.4 Questions related to MCU
interrupts

Examining the interrupt structure is a necessity
when constructing a real-time system. The
designer should look at:
How many interrupt lines or levels are there
versus how many does your system require?
Is there an interrupt level mask?
Once an interrupt level is acknowledged, are
there individual vectors to the interrupt handler
routines or must each possible interrupt source
be polled to determine the source of the interrupt
In speed critical applications, such as controlling
a printer, the interrupt response time, for
example, the time from the start of the interrupt
(worst case phasing relative to the MCU clock)
until the first instruction in the appropriate
interrupt handler is executed, can be the
selection criterion in determining the right
MCU.

3.5 Questions related to power
supply

Is a single or multiple voltage power supply
required for the system?
What is the power supply tolerance?
Is the device characterized for operation at your
system supply voltage?
Are the voltages to be held to a small fixed
percent variation or are they to operate over a
wider range?
What is the operating current?
Is the product to be a core battery operated? lf
battery operated, should rechargeable be used,
and if so, what is the operational time required
before recharging and the required time for
recharging?

3.6 Questions related to size and
environment:

Are there size and weight restrictions or
aesthetic considerations such as shape
and/or color?
Is there anything special about the operating
environment such as military specifications,

Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 45

temperature, humidity, atmosphere
(explosive, corrosive, particulates, etc.),
pressure/altitude?

3.7 Questions related to available
budget and time:

Does your schedule contain enough time and
personnel to develop your own application? The
importance of this question will be very clear if
the designer failed to find suitable MCU and the
only solution is to design single-purpose
processor.
What about royalty payments and bug support?

4. Finalizing the Selection

As a final step to help in the selection process,
built a table listing each MCU under
consideration on one axis and the important
attributes on the other axis. Then fill in the
blanks from the manufacturer’s data sheets to
obtain a fair side-by-side comparison. Some
manufacturers have pre made comparison sheets
of their MCU product line which makes this task
much easier, but as with all data sheets, be sure
they are up-to-date with current production
units.
From the discussions given at section - 2, some
of the possible attributes are:
Price
On-chip RAM, ROM, EPROM, and EEPROM
Timer(s) (number of timers, range, resolution,
etc.)
Watchdog timer
A/D and D /A
Serial ports and parallel ports (I/O control lines)
Bus speed (minimum/maximum)?
Special hardware (multiply/divide, table
lookup/interpolate, etc.)
Special instructions (multiply, divide, etc.)
Word length.
Number of available interrupts, interrupt
response time (time from start of interrupt to
execution of the first interrupt handler
instruction)
Package size/type (ceramic DIP(dual in-line
package) or LCC, plastic 0.3-inch DIP or 0.6-
inch DIP, shrink DIP (.071-inch pin spacing),
PLCC (plastic-leaded chip carrier), PQFP

(plastic quad flat pack), EIAJQFP, SOIC (small
outline integrated circuit), some involve surface
mount technology Power supply requirements
Any other items important to your system design
An example of the proposed Table is given in
Fig…
After constructing this table the designer may
face one of the following options:
1. There is one MCU fulfils all the system
requirements.
2. You have more than one MCU on the list that
fulfils the requirements. In such a case the
designer has to consider other metrics as
availability, manufacturer support, expandability
and value. For instance, consider:
What expansions in the system requirements can
you predict that will be needed in possible future
iterations of this product?
And lastly, consider value, for if two MCUs cost
the same but one offers a few more features
which are not required today but would make
future expansion easier for no additional cost,
chose that MCU.
3. No single MCU is fulfilling all the system
requirements. In this case the designer has two
options:
Study your budget and available space on the
motherboard to see if they allow the use of
additional ICs to support the MCU to fulfil all
the requirements.
If after all this, you still did not find the suitable
MCU and the supporting units, the designer has
no choice and he has to go for another processor
technology, i.e., the use of general-purpose
processor (use of microprocessor) or to design
his own single-purpose processor.
RAM bytes
ROM EEPROM Flash Serial Channel
Timers Bus
Freq.
MHz
A/D
channels
PWM
channels
I/O Operating
voltage
Package
options
Temp.
M68HC
12
8000 3200 4096 128000 3 16 8 8 8 91

Zimb. J. Sci. Technol., Vol. 4, no. 1, p 39-46 Takawira et al, Selecting the right MCU

 46

5. References

[1] Semiconductor Industry Association.
International Technology Roadmap for
Semiconductors: 1999 Edition. Austin TX:
International SEMATECH, 1999.
[2] Debadelaben, J., Madisetti V.K., el, “
Incorporating Cost Modeling into Embedded
System Design,” IEEE Design and Test of
Computers, July 1997, pp. 24-35.
[3] Gajski, Daniel D., Principles of Digital
Design. Englewood Cliffs, NJ: Prentice-Hall,
1997.
[4] Gonzales D.R., “Understanding the Key
Architectural Features of a Microcontroller”
http://www.dedicatedsystem.com
[6] Kress R. et al, “Customized Computers: a
generalized survey” , Proc. Workshop on Field-
programmable Logic and Applications (FPL’ 96),
Darmstadt, Germany, 1996.

