
Zimb. J. Sci. Technol. Vol 4, no 1, pl-3 Collier: Cross-Assembler Design

Customisation in cross-assembler design for the PIC16F872

M. Collier

Department of Electronic Engineering

National University of Science and Technology

Bulawayo, Zimbabwe

collier J 942@yahoo.co. uk

Abstract

The paper describes the development of a cross-assembler known as MCASM which enables programming of the PIC l 6F872

in a language similar in style to that of the I ntel ASM51. The work was instigated by the needs of students in the National
University of Science and Technology for a cheap and versatile means of assembly for this processor. Customised features of
the software are described.

1. INTRODUCTION

The background to this development is the

nature of the embedded systems curriculum for

Electronic Engineering students at NUST. Two

types of processors are taught and used, these

being the Intel 8051 family [l, 2] and the

Microchip PIC series. To avoid the confusion

caused by learning different assembly languages

a policy of programming in a style broadly

compatible with Intel syntax has been adopted

[3].

However the native assembly language utilised

by Microchip has a unique form with a different

logic from that of Intel. The PIC picocontrollers

use instruction pipelining to speed operation,

resulting in a RISC instruction set and

overlapped instruction execution. Each

instruction is stored as a single word in

Microchip language and normally takes one

machine cycle to execute. Thus a cross

assembler has been developed which uses op

codes similar to Intel while generating

hexadecimal code suitable for PIC devices.

2. THE NEED FOR A CROSS-ASSEMBLER

2.1 The Assembly Process

The action of an assembler is shown in Figure I

where direct conversion between assembly

language words and object code hex takes place.

2.2 The cross-assembly algorithm

When the source program is not written in the

native assembly language of the microprocessor

the operation entails language conversion, and

therefore involves a two-step process, as shown

in Figure 2.

The MCA SM cross-assembler takes the source

file and then codes each instruction line into the

Assembly

language

program

Source Code

Convert

Source to

ob·ectCode

Assembler

Fig. 1: The assembly operation

Object Code

14-bit number used by the picocontroller. To

achieve this, the MCASM program correlates

source instructions with Microchip opcodes, if

necessary creating more than one word of object

code to represent a single source instruction.

In addition to the code conversion process,

MCASM has also been customised to provide

features that experience has shown will improve

the speed and efficiency of programming.

2.3 Intel and Microchip opcodes

Intel [4] followed the basic language syntax

which has evolved from early devices such as

the 280 and Intel 8080. Fundamentally its form

is:

<opcode> <destination address> <source address>

Assembly

language
program

Source Convert
Microchip to
Object Code

Fig. 2: The Cross•Assembly operation

Object Code

