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ABSTRACT

Outliers and multicollinearity are problems in the analysis of Simultaneous Equation Model (SEM) especially in applied 
research. They can lead to bias or inefficiency estimators. This study employed a Bayesian technique for estimation of SEM 
that is characterized by both multicollinearity and outliers. Monte Carlo experiment was applied while the data sets with 
specified outliers and multicollinearity were simulated for the SEM. The estimates of Bayesian and classical methods namely: 
two stage Least Squares (2SLS), Three Stage Least Squares (3SLS), Limited Information Maximum Likelihood (LIML) and 
Ordinary Least Squares (OLS) in simultaneous equation model were then compared. The criteria used for comparison were the 
Mean Square Error (MSE) and Absolute Bias (ABIAS). The Bayesian method of estimation outperformed classical methods in 
terms of MSE and ABIAS. However, the classical method has the same performance with Bayesian method when there are no 
outliers and multicollinearity in the simultaneous equation model. Hence, Bayesian method of estimation is preferred than 
classical method when there is problem of outlier and multicollinearity in a just identified simultaneous equation model. 
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1. INTRODUCTION 

Researchers often face the problems of 
multicollinearity and outliers in applied 
works either planned or not planned. 
Multicollinearity and outliers can lead to 
poor predictive power of the model and 
statistical inferences. These can also lead 
to inefficiency of estimators of 
simultaneous equation model. When 
multicollinearity occurs in the 
simultaneous equation model, so many 
classical simultaneous equation 
estimators will be difficult to apply, 
especially the two-stage least squares 
method (Ozbay and Toker, 2018). Outliers 
are typical observations that are greatly 
different from group of observations. They 
can also make the models to have high 
error rates and substantial distortions for 
both parameter and statistic estimates 
(Zimmerman, 1998).  

In recent times, attention has been given 
to the problem of outliers and 
multicollinearity in both classical and 

Bayesian econometrics especially in 
regression models (Duzan and Shariff 
2015; Shariff and Ferdaos 2017; Adepoju 
and Ojo, 2018; Ojo, 2020 & Oyewole 
2022). There is not so much research on 
outliers in simultaneous equation models 
but there are limited researches on 
multicollinearity in simultaneous equation 
models. Major works carried out on the 
outliers in simultaneous equation models 
are Mishra (2008) and Adepoju & Olaomi 
(2012) while researches on 
multicollinearity in simultaneous equation 
models are Schink and Chiu (1996), 
Agunbiade and Iyaniwura (2010), 
Agunbiade (2011), Mishra (2017), Ozbay 
and Toker (2018). 

Mishra (2008) proposed a robust method 
that generalizes the two stage Least 
Squares (2SLS) to the Weighted Two 
Stage Least Squares (W2SLS) to tackle 
the effect of outliers and perturbations in 
data matrix. Monte Carlo method 
experiment was conducted to examine the 
performance of the proposed method in 
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simultaneous equations. It was found out 
that the robustness of the proposed 
method did not disrupt the magnitude of 
outliers but sensitive to the number of 
outliers in the data matrix. 

The performance of five estimators; 
Ordinary Least Squares (OLS), Two Stage 
Least Squares (2SLS), Three Stage Least 
Squares (3SLS), Generalized Method of 
Moment (GMM), and Weighted Two Stage 
Least Squares (W2SLS) of simultaneous 
equations model parameters with first 
order autocorrelation levels of error terms 
and there is outliers in the data at small 
sample sizes were considered by Adepoju 
and Olaomi (2012). It was observed that 
the system method performed better than 
the single equation for all the cases of 
outliers considered.   

Agunbiade and Iyaniwura (2010) 
investigated the performance of six 
different estimation techniques of a just 
identified simultaneous three-equation 
model with three multi-collinear 
exogenous variables. The estimators 
considered under the three levels of 
multicollinearity were Ordinary Least 
Squares (OLS), Two Stage Least Squares 
(2SLS), Three Stage Least Squares 
(3SLS), Limited Information Maximum 
Likelihood (LIML), Full Information 
Maximum Likelihood (FIML), and Indirect 
Least Squares (ILS). It was revealed that 
2SLS, LIML and ILS estimators were the 
best for lower open interval negative level 
of multicollinearity while FIML and OLS 
were best for closed interval and upper 
categories level of multicollinearity. 

Agunbiade (2011) investigated effect of 
multicollinearity and sensitivity of three 
estimators in three just identified 
simultaneous equation model with the aid 
of Monte Carlo approach. The study was 
estimates using mean of estimates and its 
bias. However, the study revealed that 
identical estimates as the assumed 
parameter was not produced but some 
estimates are quite close. The use of 
shapely value regression at the second 
stage of two-stage least squares for 
simultaneous equation when there is 

collinearity was also proposed by Mishra 
(2017). It was observed that all the 
structural coefficients estimated with the 
proposed two-stage least squares have an 
expected sign and can help to overcome 
the problem of collinearity. 

A biased estimation method was proposed 
by Ozbay and Toker (2018) to remedy the 
problem of multicollinearity that exists in 
simultaneous equations model. Two-
parameter estimation in linear regression 
model is carried out to the simultaneous 
equations model. Monte Carlo experiment 
and real life data were used to evaluate 
the proposed method. The performance of 
the estimation of the new method is better 
than the conventional two stage least 
squares estimator. 

Many researchers have provided 
alternative solutions like M-estimator for 
outliers (see Brikes and Dodge (1993), 
Khan et al. (2021)) and ridge estimator for 
multicollinearity (Hoerl and Kennard, 
1970).  However, these methods cannot 
be applied to outlier and multicollinearity 
when they occur in the data at the same 
time (Jadhav and Kashid, 2011). No 
researchers have used Bayesian method 
for outlier and multicollinearity problems 
together in Simultaneous equation model. 
In this study, we consider the two 
problems together, that is, multicollinearity 
and outliers in Simultaneous equation 
model by using a Bayesian method of 
estimation. The performance of Bayesian 
method and some classical Simultaneous 
equation methods in the presence of 
outlier and multicollinearity will be 
compared to know their strengths.  

The remainder of the work is organised as 
follows: Section 2 gives an overview of 
simultaneous equation model while 
Section 3 illustrates the Bayesian method 
for solving the multicollinearity and outlier 
problems in simultaneous equation model. 
Section 4 presents the design of the 
Monte Carlo experiment and results 
obtained from the experiment are 
presented and discussed in Section 5. 
Section 6 concludes. 
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1.2. Simultaneous equation model 

Consider the following two structural 
equations of simultaneous model;  

  𝑦1𝑡= 𝛽12𝑦2𝑡+𝛾11𝑥1𝑡+ 𝛾12𝑥2𝑡+𝑢1𝑡         (1) 

    𝑦2𝑡= 𝛽21𝑦1𝑡+𝛾22𝑥2𝑡+𝛾23𝑥3𝑡+𝑢2𝑡           (2)                

where, 𝑦1𝑡and  𝑦2𝑡  are the endogenous 

variables at time t and  𝑥1𝑡 , 𝑥2𝑡 and  𝑥3𝑡  
are the exogenous or predetermined 

variables.  The  𝑢1𝑡  and 𝑢2𝑡 are the  
random disturbance terms assumed to be 
independently and identically normally 
distributed with zero means and finite 

variance-covariance  matrix      i.e  𝑢  

NID (0, ∑).   Also   𝛽12 , 𝛽21 , 𝛾11, 𝛾12,  

𝛾22 and 𝛾23   are unknown  population 
parameters of the model. 

The simultaneous equations given in (1) 
and (2) can further also be written as: 

y1t  = + + +0 +   

                                                                                  (3) 

= +0 + + +    

                                                                                  (4) 
Rearranging, we have; 

 - = + +0 +  

                                                              (5) 

  - + =0 + + +   

                                                              (6) 

In   matrix form;    

=

+         (7)                                             

This can be written in reduced from as: 

    =     +    

 = +                                

                                            (8) 

=   +  v           (9) 

where         =            ,     

     

        =     

         =  

  =    

    

   

   =   
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where “𝑡𝑟” means the trace matrix, |Ω| = 
det(Ω), and 𝑀 = (𝑟𝑖𝑗) = (𝑦 − Π 𝑥)′(𝑦 −
Π 𝑥), 𝐷 is the given data. 
 
 
2.3 Prior distribution 

When there is absence of prior 
knowledge, using a non-informative prior 
in Bayesian inference can be of great 
value (see Datta and Ghosh, 1995, 
Kang, 2011 for more details on the use 
of non-informative prior). Here, we use a 
diffuse prior introduced by Jeffreys 
(1946), which is given as: 

𝑃(Π, Ω) =  𝑃(Π) 𝑃(Ω) ∝ |Ω|−3
2⁄    (16) 

2.4 Posterior distribution 
The posterior distribution summarizes 
what we know about uncertain 
quantities. It gathers all the evidence or 
information that has been taken into 
account by prior distribution. Hence, it 
combines both the likelihood and prior 
distribution. 
 
 
Therefore, the joint posterior density is 
proportional to the likelihood times prior 
and can simply be written as: 
 

𝑃 Π, Ω| 𝐷) = |Ω|exp {−
1

2
 𝑡𝑟(𝑀 Ω−1)}   (17) 

 
The major drawback of Bayesian 
method is that all joint posterior density 
of processes and parameters have to be   
specified via collection of conditional 
distributions. 
 
Hence, the conditionals densities forms 
of (17) are given as:  
 

𝑃 Π|Ω, 𝐷) ~ 𝑁(Π̂, Ω̂Π)               (18) 

𝑃 (Ω| Π, 𝐷) ~ 𝐼𝑊(𝑀, n)                       (19) 
 

  
Equations in (18) and (19) are Normal 
and Inverse Wishart distributions. 
 
In order to obtain the point estimate from 
the posterior density functions, the 
conditional posteriors given in equations 
(18) and (19) can then be solved 
numerically; these can be achieved by 
using the widely used method called 
Markov Chain Monte Carlo (MCMC)  
(see Zellner and Min 1995, Percy, 1996 
for MCMC description and applications). 
 
      
 
 

2.1 Bayesian method 
  
The Bayesian method is based on 
Bayes theorem, where available 
knowledge about parameters in a 
statistical model is updated. It also 
provides a general approach for 
combining a modeller’s beliefs with the 
evidence contained in the data Ojo 
(2021). Hence, Bayesian method entails 
three concepts namely; likelihood 
function, prior and posterior distribution. 
 
2.2 Likelihood function 
The likelihood function is the principal to 
the process of estimation of unknown 
parameters in Bayesian analysis. In 
Bayesian method, it is better to work on 
reduced form rather than the structural 
form due to prior elicitation and 
identification problem (see Dreze and 
Richard (1983), Bauwens (1984), and 
Kleibergen & Zivot (2003) for      more 
details). 
 
Recall from equation (9), 
                                  
     𝑦 = Π 𝑥 + 𝑣 
 
Using the definition of multivariate 
Normal Distribution, the likelihood can 
be written as:  
 
 

𝑃 (𝐷|Π, Ω) = 
1

(2𝜋) |Ω|𝑁 2⁄  exp {−
1

2
 (𝑦 −

Π 𝑥)′ Ω−1(𝑦 − Π 𝑥)}                         (14) 
 
 

1. 𝑃 (𝐷|Π, Ω) = 
1

(2𝜋) |Ω|𝑁 2⁄  

exp {−
1

2
 𝑡𝑟(𝑀 Ω−1)}             (15) 
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Markov Chain Monte Carlo (MCMC) 
(see Zellner and Min 1995, Percy, 1996 
for MCMC description and applications). 
 
3. Monte Carlo Experiment  
In this Section, a Monte Carlo 
experiment will be setup to facilitate 
comparison between the Bayesian 
method and classical methods in 
simultaneous equation model that is 
characterized by multicollinearity and 
outliers. The steps of the experiment are 
outlined below: 
 
3.1 Generate the exogenous 
variables𝑥1𝑡 , 𝑥2𝑡 and  𝑥3𝑡  for each 
sample point. Here, the variables will be 
generated from the uniform distribution 
(0, 1) Kmenta (1971) and Ojo and 
Adepoju (2013). These exogenous 
variables are characterized by 
multicollinearity and outliers. The levels 
of multicollinearity are: 
 
3.1.2 High Multicollinearity (HM): 0.95 
and 0.99 
 
3.1.3 Low Multicollinearity (LM): 0.2    
and 0.40 while the scenarios of  
outliers are: 0%, 10% and 20%. 
 

 The initial values of the 
parameters are chosen arbitrarily 

given as: 𝛽21 = 0.5, 𝛽12 =0.8, 

𝛾11=1.5,  𝛾12=1.0, 𝛾22=1.0, 

𝛾23=1.0 

 The disturbance terms,    and 

   will also be generated at 

each sample point. 

 The disturbance terms and 
exogenous variables will be used 
to generate the endogenous 
variables. 

 The sample sizes considered are 
15, 50, and 100 while each of the 
samples is replicated10000 
times, burn-in period=1000. 

 
  
 
 

4. Results and Discussion 

This Section discusses the results from 
the Monte Carlo experiment described in 
Section 3. Two criteria namely Absolute 
bias (ABIAS) and Mean squared error 
(MSE) will be used. The MSE and 
ABIAS for estimators namely; Bayesian, 
two stage least squares, three stage 
least squares, Limited information  
Maximum  likelihood, and Ordinary least 
Squares are obtained for different 
sample sizes of collinearity and outliers 
in Tables 1 and 2. It was observed that 
the estimates of two stage least 
squares, three stage least squares, and 
Limited information Maximum likelihood 
are the same, hence they are 
represented by 23LIML while Bayesian 
is represented by Bayes. The estimator 
with the minimum ABIAS and MSE is 
the most efficient. 

From Table 1, the Bayes method has 
the least absolute bias followed by 
23SLS while the OLS method has the 
largest absolute bias for the two 
equations for all the levels of collinearity. 
It was also observed that the bias 
estimates decreases the sample sizes 
increases for all the methods considered 
across the levels of collinearity. The 
ABIAS obtained in both equations 1 and 
2 for 10% and 20% are higher than 
when there no outlier. The ABIAS 
estimates for equation 1 are smaller 
than equation 2 for all the sample sizes 
considered across both levels of outliers 
and collinearity. 

In Table 2, it is observed Bayes method 
gives the minimum MSE for the entire 
sample sizes considered followed by 
23LIML while OLS has the highest MSE. 
All the methods are not greatly affected 
by outliers; however when the 
percentage of contamination goes to 
10% and 20%, the MSE of the 
estimators increases. For low level of 
collinearity, the MSE are minimal. 
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5. Conclusion 

Multicollinearity and outliers are great 
problems in applied work. This work 
determined the best method of estimation 
when a just identified simultaneous 
equation model has both problem of 
multicollinearity and outliers. The method 
considered were Bayesian, two stage least 
squares; three stage least squares, limited 
information maximum likelihood, and 
ordinary least squares. The performance of 
the estimators were evaluated using mean 
square error and absolute bias. When there 
is no outliers, all the estimators have the 
same performances, however when the 
levels of outlier were 10% and20%, the 
estimates of the estimators increases. The 
Absolute bias and mean squared error 
estimates of the estimators increases as 
the level of collinearity also increases. Also, 
all the methods considered show consistent 
asymptotic pattern with values of absolute 
bias and Mean squared error decreasing 
consistently. Bayesian method of 
estimation outperformed all other method of 
estimation when mean square error and 
absolute bias were used as criteria. Hence, 
Bayesian method of estimation is 
considered the best estimator when a just 
identified simultaneous equation model has 
both problem of multicollinearity and 
outliers. 

6. Code availability  

The code used can be obtained from the 
corresponding author. 

References 
Adepoju, A. A. and Ojo, O. O. 2018. Bayesian 
method for solving the problem of  multicollinearity 
in regression. Afrika Statistika 13(3): 1823-1834. 
 
Adepoju, A. A. and Olaomi, J. 2012. Evaluation of 
small sample estimators of outliers infested 
simultaneous equation model: A Monte Carlo 
approach. Journal of Applied Economic 
Sciences 7(1): 8-16. 
Agunbiade, D. A. 2011. Effect of multicollinearity and 
sensitivity of estimation methods in simultaneous 
equation model. Journal of Modern Mathematics and 
Statistics 5(1): 9-12. 
Agunbiade, D. and Iyaniwura J. O. 2010. Estimation under 
multicollinearity: a comparative approach using 
Monte Carlo methods. J Math Stat 6(2):183–192. 
Bauwens, L. 1984. Bayesian Full information analysis of 
Simultaneous equation models  using integration  
by Monte Carlo, Springer Verlag. 

 
 



ZJST. Vol.18[2023]                                                                                                                                Ojo, 34-42 

40 
 

Özbay, N. and Toker, 2018. Multicollinearity in 
simultaneous equations system: evaluation  of 
estimation performance of two-parameter estimator. 
Computational and Applied Mathematics 37(4): 5334-
5357.  

Percy, D. F. 1996, Zellner’s Influence on Multivariate 
Linear Models, in Bayesian Analysis in  Statistics and 
Econometrics: Essays in Honor of Arnold Zellner, eds. 
D.A. 

Schink, W. A. and Chiu, J. S.Y. 1996. A Simulation study 
of effects of multicollinearity and  autocorrelation 
on estimates of parameters. The journal of Financial and 
Quantitative Analysis. 1(2): 36-67. 

Shariff, N, S. and Ferdaos, N. A. 2017. An application of 
robust ridge regression model in the  presence of 
outliers to real data problem. Journal of Physics: 
conference series 890,:1-7. 

Zellner, A., and Min, C. K. 1995, Gibbs Sampler 
Convergence Criteria, Journal of the  American 
Statistical Association, 90: 921–927. 
 
Zimmerman, D. W. 1998. Invalidation of parametric and 
nonparametric statistical tests by concurrent 
violation of two assumptions. Journal of Experimental 
Education, 67(1):  55-68. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ZJST. Vol.18[2023]                                                                                                                                Ojo, 34-42 

41 
 

Appendix 

Table 1: Absolute Bias of the estimators with varying sample sizes for collinearity and 

outliers 

Sample size 15 50 100 

Eqn Method Collinearity 

levels 

Outliers Outliers Outliers 

0 10 20 0 10 20 0 10 20 

1 OLS 0.99 2.056 2..353 2.436 1.665 1.814 1.921 1.451 1.513 1.613 

0.60 0.714 0.913 1.274 0.501 0.610 0.736 0.247 0.426 0.510 

0.20 0.561 0.610 0.402 0.492 0.592 0.720 0.158 0.013 0.218 

23LIML 0.99 1.583 1.393 1.691 1.329 1.489 1.391 0.481 0.821 0.942 

0.60 0.492 0.691 1.024 0.392 0.529 0.492 0.192 0.291 0.482 

0.20 0.329 0.492 0.692 0.382 0.182 0.321 0.018 0.128 0.181 

Bayes 0.99 0.197 0.192 1.283 0.732 0.821 0.913 0.002 0.148 0.285 

0.60 0.219 0.271 0.294 0.031 0.059 0.071 0.001 0.081 0.103 

0.20 0.004 0.019 0.028 0.008 0.004 0.017 0.001 0.019 0.027 

2 OLS 0.99 5.356 6.153 6.913 4.414 4.810 5.012 3.014 4.028 4.821 

 0.60 4.829 4.914 5.018 3.091 4.191 4.391 2.018 2.918 3.048 

 0.20 3.829 3.991 4.192 3.012 3.291 4.014 1.041 2.492 2.563 

23LIML 0.99 0.356 0.356 0.356 0.465 0.821 0.917 0.618 0.7183 1.632 

 0.60 0.271 0.483 0.282 1.593 1.829 2.491 0.392 0.219 0.192 

 0.20 0.282 0.193 0.493 0.192 1.452 1.823 0.138 0.319 0.218 

Bayes 0.99 0.008 0.013 0.210 0.013 0.029 0.193 0.001 0.021 0.043 

 0.60 0.142 0.004 0.103 0.002 0.081 0.093 0.020 0.028 0.033 

 0.20 0.010 0.029 0.031 0.028 0.033 0.076 0.001 0.001 0.001 
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Table 2: MSE of the estimators with varying sample sizes for collinearity and outliers 

Sample size 15 50 100 

Eqn Method Collinearity 

levels 

Outliers Outliers Outliers 

0 10 20 0 10 20 0 10 20 

1 OLS 0.99 6.192 7.396 7.921 4.019 5.829 6.183 2.029 2.712 2.098 

0.60 4.193 5.940 6.011 3.983 3.391 3.017 1.393 2.001 3.191 

0.20 5.193 5.812 5.889 2.001 2.397 4.191 1.430 1.552 2.083 

23LIML 0.99 4.289 4.908 4.716 1.933 4.882 5.018 0.255 1.380 0.829 

0.60 2.392 3.110 3.814 2.910 2.816 2.914 0.133 1.231 0.383 

0.20 2.135 3.022 3.007 2.136 2.490 3.025 0.582 0.800 1.227 

Bayes 0.99 1.669 1.382 1.888 1.216 1.305 1.529 0.501 0.628 0.723 

0.60 1.302 1.811 1.906 1.237 2.192 1.724 0.021 1.150 0.158 

0.20 0.628 2.820 2.977 2.243 1.428 2.518 0.281 0.778 0.993 

2 OLS 0.99 8.160 8.936 7.522 7.461 7.722 4.206 4.119 4.296 2.911 

 0.60 5.993 7.200 6.293 3.916 5.229 3.193 2.104 3.888 1.948 

 0.20 3.813 4.001 4.729 2.917 3.914 4.285 1.395 1.732 0.813 

23LIML 0.99 4.359 0.356 0.356 3.465 4.028 3.281 2.001 2.875 1.377 

 0.60 3.006 4.913 0.182 1.110 2.913 2.015 1.393 1.118 0.724 

 0.20 1.842 3.927 1.996 2.537 2.114 2.439 0.832 1.027 1.279 

Bayes 0.99 0.629 0.669 0.703 0.518 0.592 0.551 0.281 0.319 0.402 

 0.60 0.382 0.490 0.511 0.317 0.423 0.518 0.201 0.289 0.318 

 0.20 0.029 0.201 0.388 0.026 0.173 0.192 0.000 0.001 0.016 

 

 


