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ABSTRACT 
Optimisation of the manufacturing process parameters, which are often in conflicting orientations, is an important consideration 
for actuating efficient production processes in order to improve competitiveness. Efficient machining of the hard-to-process 
materials such as Titanium alloy reveals an extensive field of research and has become increasingly significant in fulfilling multiple 
requirements of sustainable manufacturing such as ecological, economic and legislative consideration in production activities. 
Throughout the past few decades, multi-objective mathematical programming had been a lively area of research in the field of 
the manufacturing industry, particularly for purposes of operating conditions optimisation. In this literature-based survey and 
experimental study, goal programming is assessed for feasibility of use for predicting and optimising the machining parameters 
during the turning of Ti6Al4V components. A comprehensive literature study, about the application environments of Goal 
Programming, had been performed. Outside turning experiments were conducted with coated carbide tools at different process 
parameter settings. Cutting parameters were characterised against the output parameters. Mathematical Models were developed 
using regression analysis, on Minitab 20 Software. The parameters characterisation results and developed mathematical models, 
which are all linear in nature, show applicability of goal programming once the goal targets for each machining output performance 
parameter are established. Survey results showed the feasibility of goal programming as a tool for predicting machining process 
parameters. Future research is also outlined. 
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1.  INTRODUCTION 
Saving energy, conserving resources and 
increasing productivity are conflicting 
challenges confronting the machining 
manufacturing industry of Ti6Al4V (also 
known as Grade 5 Ti-alloy) components 
today (Kress, 2012). Titanium alloys are 
used in the aerospace, medical, defence, 
marine and other industries due to their 
excellent mechanical and chemical 
properties such as high strength-to-weight 
ratio, corrosion resistance, high 
temperature strength and biocompatibility 
properties (Budinski & Budinski, 2010). 
Due to these attractive properties the 
demand for titanium alloy parts is 
increasing. The high intrinsic costs of 
processing Ti-alloy, however, remain a 
setback towards the widespread use of this 
material which is the fourth most abundant 
material on earth (Ezugwu & Wang, 1997). 
In machining-based manufacturing the 
optimisation challenge is related to the 

desirability of achieving high material 
removal rate; minimising power 
consumption; minimising tool wear and 
cutting forces whilst simultaneously 
improving work piece surface quality. 
Balancing the selection of the cutting 
parameters such that these conflicting 
objectives are simultaneously addressed 
bodes well for the sustainability of the 
manufacturing process. During machining 
of the difficult-to-cut materials such as 
grade 5 titanium alloys, factors such as 
selection of the best combination of cutting 
parameters, which optimises the 
machining process, relay important 
information towards understanding the 
process efficiency management. 
Manufacturing resource use efficiency is 
one of the key factors of sustainability 
assessment in a manufacturing 
environment (Duflou, et al., 2011). 
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The real world of machining-based 
manufacturing is mainly faced with the 
challenge of balancing multiple conflicting 
objectives rather than singular objective, 
such as having to achieve minimum tool 
wear for example or achieving good 
surface finish. Inadvertently, reduced tool 
wear is associated with minimum material 
removal rate and reduced surface finish. In 
the production environment, these 
outcomes may be undesirable whilst the 
tool wear minimisation is realised. This may 
demand that tool wear minimisation be 
realised at the same time increasing 
material removal rate (productivity) and 
increased surface smoothness of the 
workpiece. These are typical conflicting 
objectives of a machining-based 
manufacturing task. This study seeks to 
contribute towards sustainable 
manufacturing of Ti6Al4V components, 
through developing a platform/framework 
for efficient machining process planning 
using Goal Programming (GP). Goal 
programme refers to a mathematical model 
comprising linear or non-linear functions 
and discrete or continuous variables, 
wherein all functions have been 
transformed into goals. The mathematical 
function which have to be attained or 
achieved at a specified level is termed the 
goal function, whereas, the function which 
serves to measure the achievement of the 
minimising of undesired goal deviation 
variables is termed as the achievement 
function (Aouni & Kettani , 2001). The 
concept of goal programming is to 
transform the initial multiple, and often 
conflicting, objectives into a single goal, of 
which the model solution yields a satisficing 
result to the conflicting objectives in the 
manufacturing problem, efficiently and 
satisfactorily. Goal normalisation is 
performed in order to minimise possible 
bias effect of the different measurement 
dimension units, as a way of ensuring 
achievement of satisfactory solution level 
of all the conflicting multiple objectives 
under consideration (Winston, 2004). Goal 
programming (GP), unlike linear 
programming which seeks to maximise or 
minimise (optimise) a singular objective 
function, minimises the sum of the 
deviations between the objective target 
values and the actual achieved results. GP 

and its variant models have been used to 
provide solutions to large-scale multi-
criteria decision-making challenges 
(Nabendu & Manish, 2012). It affords 
taking into consideration simultaneously, 
while a decision maker seeks the most 
satisficing solution from amongst a set of 
feasible solution, several objectives. It is a 
special type of optimising tool which 
provides an analytical framework which a 
decision maker could employ to proffer 
optimal solutions to multiple conflicting 
objective problems. According to Sen and 
Nandi GP, as a modelling tool, has close 
correspondence with actual reality 
practiced in decision making (Sen & Nandi, 
2012). In reality, even on the manufacturing 
planning floor, decision makers will be 
intent on achieving different goals, usually 
formulated as aspiration levels. In each 
operation, the intensity with which attempts 
are made at attaining the goals may differ 
from goal to goal. Thus, different weight 
assignments may be given to striving to 
attain different goals. Hence, the 
importance of each outcome at a particular 
instance. In machining-based production, 
at process level, multiple objectives arise 
because of different outcomes occurring on 
the tool/workpiece/chip interface as a result 
of changes made in the cutting parameter 
settings. Multiple objectives in machining-
based production businesses, arise 
because of the need to fulfilling several 
incompatible outcomes at the cutting point. 
For example, conditions requiring best 
outcome on the work surface may be such 
that the tool wears out faster or conditions 
that minimise energy consumption are that 
productivity is reduced. In fact, the 
fundamental concept of goal programming 
is whether the goals are achievable or not, 
an objective may be outlined in which 
optimisation proffers a result which 
approaches as close as possible to the 
stated goals. The intention of this research 
is to establish if this technique can 
represent a viable approach to machining 
based manufacturing planning, noting that 
there is no much publications, of its use, in 
the machining industry, particularly those 
involved in the machining of Ti6Al4V.  
 
In a number of machining production 
shops, decision making about the optimum 
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setting of cutting conditions, is 
fundamentally, based on past experiences 
of the operatives. As such, judgement and 
intuition brings in more intricacy and 
difficulty. According to Misir and Misir 
(2007), the human intellect is not capable 
of perceiving, in all details more than seven 
parameters, on average, simultaneously. 
As such, manufacturing decision making in 
the production shops, had long ceased to 
be an art wherein the decision maker just 
apply mental models to establishing viable 
solutions. Rather, scientific decision 
making, is applied with mathematical 
models being applied to establish solutions 
to organisational problems such as 
determining optimum machining parameter 
settings decision. The main intention is to 
further contribute to the sustainable 
machining of Ti-alloy components through 
enhancing the machining process resource 
use efficiency during the planning stage.  
 
1.1 Goal programme optimisation  
      application in industry and 
       business survey 
 
Machining manufacturing companies need 
to incessantly improve their operations - 
processes and products need to be 
optimised on a daily basis. Thus, reliable 
cutting parameters selection plays a 
significant role in today’s machining-based 
manufacturing business planning process. 
The machining optimisation problem lies in 
the fact that, it possesses multiple 
constraints which is related to more than 
one objective. Usually, with singular 
objective optimisation, the achievement of 
optimality in one factor lead to the 
aggravation of challenges in one or more 
other factors. Challenges related to the 
requirement of optimising more than one 
objective originate from outcomes tending 
to trend in different directions (Lee, 1972), 
and solving them had been a challenge 
bedeviling engineers for a long time. 
Typically, the use of a single optimisation 
technology, is not sufficiently practical in 
dealing with real life machining-based 
manufacturing problem. Consequently, 
manufacturing engineers frequently find 
themselves required to solve 
manufacturing planning problems with 
several conflicting objective functions.  

Goal Programming and its variants have 
been utilised to solve multi-criteria 
decision-making problems in many fields 
(Sen & Nandi, 2012). The Multi-Disciplinary 
Optimisation Technical Committee, of the 
United States of American Institute of 
Astronautics (AIAA), explained Multi-
Disciplinary Optimisation as the optimal 
design of complex engineering systems 
which require analysis that accounts for 
interactions amongst the disciplines, or 
parts of the system, and which pursues to 
synergistically achieve these interactions 
(Tamiz & Jones, 2010). Whereas the Multi-
Criteria Decision Making (MCDM) relate to 
the solution development of problems 
constituted of multiple and conflicting goals 
and producing final solutions which 
represents a good compromise that is 
acceptable to the entire system set of 
objectives (Ignizio, 1978). By minimising 
the deviations between the target values 
and the actual yielded result values, goal 
programming is utilised to manage the 
optimisation problem of multiple conflicting 
objectives (Misir & Misir, 2007). Goal 
programming is a part of the multi-criteria 
decision analysis tools wherein it is 
considered as a branch of the multi-
objective optimisation techniques (Orumie 
& Ebong, 2014,). It is utilised to manage 
and plan the simultaneous attainment of 
conflicting objectives of an operation 
process by minimising the variation 
(deviation) of the realised results from the 
intended or desired targeted results (Sinha 
& Sen, 2011). Thus, as a decision-making 
support technique, Goal Programming 
(GP) is used in the optimisation of several 
objective goals which in most instances will 
be in conflict – where in the attainment of 
one goal tend to aggravate the situation of 
the other objectives. According to Sinha 
and Sen, the intention of GP is to minimise 
the achievement of each actual goal level, 
such that if no-achievement is pushed to 
zero, then the attainment of the goal have 
effectively been realised (Sinha & Sen, 
2011). GP is an analytical special 
technique framework that decision makers 
could use to provide optimal solutions to 
conflicting multiple objective production 
planning problems. In this manner, GP 
would provide solution and information for 
utilisation by the decision makers (Dantzig, 
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1948; Charnes & Cooper, 1961; Lee , 
1972). A number of authors such as, Lin in 
concurrence with Orumie and Ebong 
proposed the application of Goal 
Programming in a number of articles to 
solve a myriad of problems (Orumie & 
Ebong, 2014,; Lin , 1980). The noted 
limitations of the utilisation of the Linear 
Goal Programming (LGP) models had 
been the non-availability of an algorithm 
capable of attaining optimality in 
reasonable time, however.  
  
Generally speaking, optimisation explains 
the selection of the best available option 
from a wide range of possible options. 
Manufacturing business organisation 
objectives, in practice, may vary dependent 
upon the philosophy and characteristics of 
the business, operating environmental 
conditions, inter alia. Profit maximisation is 
regarded as the main sole objective of the 
business management. However, due to 
the pressure from society and statutory 
regulations, the firm will have other 
objectives – thus multiple objectives which 
may include high product quality, 
operations employees’ safety, social 
contributions, good industrial and labour 
relations, maximising profits, among 
others. At machining process level, the 
multiple objectives may be achieving high 
productivity level, increasing material 
removal rate, minimising tool wear, 
achieving high surface quality, minimising 
energy use, maintaining good workpiece 
and tool bit integrity, etc. All these 
contrasting objectives would require the 
machine operating parameters to be set at 
different level in order to realise them. Goal 
programming had been used to solve 
multiple-and-conflicting objective 
optimisation problems in many fields such 
as Mutual Fund Portfolio selection (Sharma 
& Sharma, 2006), Farm cropping land 
determination (Jafari , et al., 2008), 
Plantation space occupancy planning 
(Nabendu & Manish, 2012) and modeling 
3D trade-offs in concurrent engineering 
problems (Charles, et al., 2005). 
Fortenberry and Mitry applied GP to model 
and address facility location problem with 
multiple competing objectives, whilst 
Kornbluth employed GP modelling for 
industrial and economic planning challenge 

(Kornbluth, 1973), inter alia. Premchandra, 
(1993) modelled decision making platform 
for large number of interrelated activities in 
project planning and scheduling. In solving 
a multi-objective resource planning and 
network-based optimisation challenge, 
Shim and Chun (1991) utilised goal 
programme modelling. In soliciting optimal 
combinations of diverse fertilisers for the 
soil sustaining a rice crop, Karbasi, et al., 
(2012) utilised goal programme modelling 
to a good effect. Kornbluth (1973) 
presented on goal programming use for 
industrial and economic planning 
purposes. Nhantumbo and Kowero (2006) 
developed a multi-objective production 
planning model for minimising production 
penalties, whilst maximising profitability. 
Alp, et al (2011) used linear goal 
programme modelling in surveying 
engineering for vertical network 
adjustment. Deducing from these earlier 
studies, Goal Programming may be more 
advantageous to use as a technique in 
dealing with practical manufacturing 
problems encountered in machineshops 
because it tends to mirror the way humanity 
make decisions. It is apparent that it 
presents a feasible approach to production 
planning, however, it is not in widespread 
use amongst manufacturing companies 
particularly of discrete machined 
components. It affords the decision maker 
the scope to incorporate diverse 
circumstances surrounding a real life 
decision situation through modelling the 
goal levels and priorities according to what 
instance require to be emphasised on at 
that particular instance. Yet, typically, it 
(GP) had not been used extensively in 
solving cutting parameter selection 
decisions during the machining process 
planning of Ti6Al4V. 
 
1.2 Goal programme modeling  
      approach  
Multi-objective modelling techniques - in 
the purview of manufacturing - were in the 
recent past formulated and solved, to 
provide information on the compromise 
among conflicting and competing multi-
objectives.  The goal programming (GP) 
modelling approach does not seek to 
directly maximise or minimise the objective 
function, as happen in linear programming. 
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Instead, GP seeks to minimise the 
deviations between the looked-for goals 
and the actual results obtained in 
accordance to the priorities set (Alp, et al., 
2011). Thus, as a modelling technique, GP 
is used to manage a cluster of conflicting 
objectives of the modelled situation by 
minimising the deviations of the realised 
results from the target result values. The 
initial objectives are formulated anew as a 
set of constraints with target values 
accompanied by two auxiliary variables, 
being the positive deviation (d+) and 
negative deviation (d-), representing the 
distance from the set target values. The 
intention of GP is to minimise the 
deviations from achieving set goals, in a 
hierarchical order, in such a manner that 
goals of higher order importance receive 
first attention before goals of lower order 
priority successively. Goals of first priority 
are minimised in the first place, then using 
the attained feasible solution outcome in 
this stage, goals of the second priority are 
minimised successively and so on.  
 
Multiple conflicting objectives, in 
machining-based production arise because 
of several opposing outcomes which result 
when, say the cutting parameters are 
adjusted on the machine in order to realise 
a particular outcome. Typically, for 
example, generally increasing the cutting 
conditions, say cutting speed, feed rate and 
depth of cut, produces high material 
removal rate during a cutting operation 
(Oosthuizen, et al., 2013). This result is a 

positive outcome, however, it will also be 
accompanied by increased tool wear and 
rough surface quality of the job – which are 
undesirable outcomes. The basic notion of 
goal modelling is that, whether the set 
goals are achievable or not, the objective 
may be stated in which optimisation 
proffers a result which comes as near as 
feasible to the stated goals. As a decision-
making support technique, goal 
programming aims at optimising numerous 
(up to 120, software dependent) goals and 
simultaneously minimise the deviation of 
each from the intended target objective 
(Sen & Nandi, 2012). The intention of goal 
programming, is to limit the deviations in a 
hierarchical order system such that the 
goals of principal importance, for that 
machining operation process, receive first 
priority focus of attention, whilst those of 
second order of importance receive second 
priority attention, and goals of eventual 
orders of importance, respectively, receive 
eventual priority order attention as such. 
Successively, using the feasible solutions 
of the highest order priority of goals, 
objectives of the eventual priority order of 
importance are respectively focused on 
and minimised (Orumie & Ebong, 2014). 
Lower ordered goals would only be 
considered after the satisfaction of the 
higher ordered goals (Sen & Nandi, 2012). 
 
The general steps of developing a GP is 
structured, thus (Rifai, 1996; Orumie & 
Ebong, 2014), shown in Table 1. 

 

Table 1. Steps of developing goal programme structure 
 

Step 
No 

Step process 

1 
Discover the goals and convert them to constraints by introducing 

deviational variables. 

2 
Scrutinise the goals and establish the deviational variables exactly required 

for them. 

3 
Rank the goals in order of importance and pre-emptive priority factor 

assigned to each of them. 

4 
Where ties exist in priority ranking, assign, to each of the deviational 

variables in the priority, a weight to break such. 
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The general variants of the GP modelling 
are firstly the pre-emptive weighted priority 
goal programming, wherein both goal 

prioritisation and pre-emptive weights 
assignment are applied in the formulation 
of the model (Orumie & Ebong, 2011). The 

general expression of the model would be 
as presented in equation (i): 
 
 

𝑀𝑖𝑛 𝑧 = ∑ 𝑤𝑖𝑝𝑖(𝑑𝑖
− + 𝑑𝑖

+𝑚

𝑖
)   (i) 

st ∑ 𝑎𝑖𝑗𝑥𝑖𝑗 + 𝑑𝑖
− − 𝑑𝑖

+ = 𝑏𝑖

𝑛

𝑗
  (𝑖 =

1, 2, … . , 𝑚 )    (ii) 

𝑥𝑖𝑗 , 𝑑𝑖
−, 𝑑𝑖

+  ≥   0 , 𝑤𝑖  >   0   (iii) 

(𝑖 = 1, 2, … . , 𝑚;   𝑗 = 1, 2, 3, … . , 𝑛  )  (iv) 
 
 

Where, 𝑑𝑖
−, 𝑑𝑖

+ are the negative and 

positive deviation variables, 𝑏𝑖 is the goal 

target, 𝑝𝑖 is the pre-emptive priority factor, 
𝑤𝑖 is the goal priority weighting factor, 𝑧  is 
the achievement function.  
 
The second variant of the goal programme 
is called the pre-emptive or lexicographic 
goal programming (Orumie & Ebong, 
2014,; IJiri, 1965) model. This is employed 
when the decision maker may not be able 
to determine precisely the relative 
importance of the goals in advance. 
Instead, the goals are ranked in order of 
importance with the most important goal 
being assigned first priority. The second 
most important goal being assigned 
second priority, e.tc. The solution 
procedure starts by concentrating on 
meeting the most important goal and 
successively in that manner until the least 
important goal priority is addressed. The 
prioritisation of the objective functions is 
such that the achievement of the first goal 
is far important than the attainment of the 

second goal, which itself is far important 
than the third goal attainment, and so on. 
By this arrangement lower order goals can 
only be attained if they do not degrade the 
solution achieved by higher priority goals. 
The pre-emptive Goal Programme model 
achievement is expressed thus, (Orumie & 
Ebong, 2011): 
 
 

𝐿𝑒𝑥𝑖 min 𝑧 = ∑ 𝑝𝑖
𝑘
𝑖 (𝑑𝑖

− + 𝑑𝑖
+)   (v) 

 
 
The third variant of the GP modelling is 
whereby weights are attached to each of 
the objectives in order to quantify the 
relative importance of the deviations from 
their goal targets. This is termed the 
Weighted Goal Programming (WGP) (Ken 
& Perushek, 1996)). Using WGP several 
objectives can be simultaneously handled 
with specific numeric goals established for 
each of the objectives and a solution which 
comes as close to each of the goals can be 
determined (Marler & Arora, 2004). The 
WGP model algebraic expression can be 
expressed as shown in equation (vi): 
 
 

𝑀𝑖𝑛 𝑧 = ∑ (𝑤𝑖
−𝑑𝑖

− + 𝑤𝑖
+𝑑𝑖

+𝑚

𝑖
)   (vi) 

 

Where 𝑤𝑖
− and 𝑤𝑖

+ are the numeric weights 

associated with the respective deviational 
variables (≥ 0), denoting how far the 
decision is from the target goal below or 
above the target value.  

  
3.0 Materials and Methods 
 
The ensuing sections present the research 
strategies used in the empirical study. 
Grade 5 Titanium alloy (Ti6Al4V) 
machining experiments were conducted to 
generate primary data which would be fed 
into Minitab software package for further 
analysis – Characterisation of the cutting 
parameters against the output parameters, 
generate mathematical models of the 
performance parameters as influenced by 
the input parameters through regression 

analysis. Regression equations would then 
be fed into the Lindo/Lingo software 
platform, after being converted into goal 
programming models, for the prediction of 
cutting parameters through an iterative 
process, once the expected performance 
standard for the output variable are 
entered. 
  
3.1 Experimental Set-up and Design 
 
Outside turning experiments were 
conducted on a precision Efamatic CNC 



ZJST. Vol.15 [2020]                                                                   Tayisepi 101– 115 
 

107 
 

lathe machine with the following features: 
Model is Efamatic RT-20 S; Slant Bed CNC 
lathe Machining Centre; maximum spindle 
speed of 4500 RPM; Main motor power, AC 
11/15 kW; Machine weight, 3.8 tonnes; 
Maximum bar stock, 75 mm; Double axes 
with respective travels of 260 mm diameter 
on X-axis and 450 mm on the Z-axis. The 
workpiece material is diphase (Dabrowski, 
2011) titanium alloy, Ti6Al4V (Grade 5 
titanium alloy) which was supplied in 
annealed condition at 36 HRC as a solid 
round bar (Ø = 75.4 mm x 250 mm long). 
The work piece chemical composition and 
mechanical strength characteristics (as per 

materials certificate) are presented in 
Tables 2 and 3 respectively.  
 
A 0.5 mm initial cut was conducted before 
the experiment iterations were started in 
order to remove and eliminate any prior 
processing induced residual stresses, 
uneven surface trueness and other surface 
defects which may adversely affect the 
machining results (Kalpakjian &  
 
Schmidt, 2001). The cutting tip used for the 
cleaning cut was not involved in the 
experiment iterations. 

  

 
Table 2.  Chemical composition of Titanium alloy (Ti6Al4V) material used 

 

Element Al V C Fe N O H Others Ti 

% Content 6.0 4.1 0.02 0.14 0.01 0.16 0.001 0.5 89.069 

 
 

Table 3. Mechanical strength properties of the Ti6Al4V alloy used 

Mechanical 
Characteristic 

Treatment 
Condition 

Tensile 
Strength 
(MPa) 

Yield 
Strength 
(MPa) 

Elongation  
(%) 

Reduction of 
Area (%) 

State/Value Annealed 969 847 13 28 

 
The research considered the simultaneous 
variation of cutting speed and feed rate 
(machining parameters) on the tool life, 
surface integrity, cutting forces, chip 
formation and energy use/consumption as 
responses (performance factors). Table 4 
presents the turning parameters and 
condition levels on which the experiments 
were conducted. As regards the 
experimental design, the variable 
parameters in the turning experiments 
were: six cutting speeds (50, 70, 100, 150, 
200, and 250 m/min), and three feed rates 
(0.1, 0.2, and 0.3 mm/revolution 
respectively). A set of  

 
eighteen (18) experiments were conducted 
using eighteen tools to cut the work 
specimen materials at a constant depth of 
0.5 mm. Collectively a total of seventy-eight 
(78) machining cutting tests/runs were 
conducted. In each cutting test, the 
machining power (for machining energy), 
cutting and feed forces and surface 
roughness are measured and recorded. 
Tool wear was measured at the end of 
each machining pass of 180 mm, specimen 
length. The experimental set-up and the 
machine and data collection equipment 
connection, schematic arrangement, is 
presented in Figure 1. 

  
Table 4. Machining parameters and conditions of the turning experiments 

 

Parameter Condition 

Cutting Speed (𝑉𝑐) 
Feed/rev (fn) 
Depth of Cut (𝐷𝑜𝐶) 
Coolant  

50, 70, 100, 150, 200 and 250 m/min. 
0.1 – 0.3 mm/rev in 0.1mm steps. 
0.5 mm Constant. 
Flood coolant. 
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Figure 1. The experimental set-up 
 
 

4.0 RESULTS:  
 
4.1 Parameter characterisation and  
      observation during the machining  
      of TI 6al4v 
 
This section present results of the 
characterisation, of cutting parameters on 
the response parameters. Regression 
equations models, developed, and 
analyses are also presented. 
 
 

4.1.1 Total cutting power during  
          machining (ToP) 
 
Figure 2 shows the 3-dimensional plot of 
the feed rate fn, cutting speed, vc and total 
cutting power of the machine, ToP. It is 
apparent that the total machining power 
increases with both increasing cutting 
speed and feed rate. However, the 
increase with respect to cutting speed is 
steeper as compared to the increase with 
feed rate.  

 
 

Figure 2 Surface plot of total machine power –ToP (kW) vs cutting speed - vc (m/min) 
and feed rate - fn (mm/rev) 
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4.1.2 Regression Analysis: Total 
         Cutting Power During Machining 
        (ToP) 
 
The Regression Equation, expressing the 
mathematical relationship of the input 
factors (vc and fn) to the response 
parameter (total machining power), is 
shown on equation (vii). The strong 
representativeness, of the data by the fitted 
regression line, is indicated by the 
coefficient of determination (r2) of 96.49% 
on the model summary of the total 
machining power (Table 5). That means 
the predictors explain 96.49% of the 
response (total machining power).  
 
ToP = 0.9115 + 0.005535 vc + 2.268 fn(vii) 
 

 

Table 5. Model summary of total 
machining power (ToP) 

 

S R-sq R-
sq(adj) 

R-
sq(pred) 

96.49% 96.49% 94.04% 88.64% 

 
 
4.2.1 Material removal rate (MRR) 
 
The surface plot of the material removal 
rate versus cutting speed and the feed rate 
is shown in Figure 3. This summarises the 
joint influence of the input parameters, vc 

and fn on the response MRR. It is apparent 
that MRR is positively influenced by both 
increasing vc and fn. The influence of vc 
tend to be more pronounced, however, 
when compared with the influence of fn. 

 

Figure 3 Surface plot of Material removal rate - MRR (mm3/min) as a function of cutting 
speed - vc (m/min) and feed rate - fn (mm/rev) 

 
4.2.2 Regression equation: Material 
removal rate (MRR) 
 
The Regression Equation, relating the input 
factors to the response function (MRR), is 
given by (viii): 
MRR = -157.1 + 1.178vc + 926fn  (viii) 

 
The coefficient of determination of 95.93% 
Table 6 shows very strong 
representativeness of the data by the fitted 
regression line 
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Table 6. Model summary of material removal rate 
 

 
 
 
4.3 Chip Morphology 
The chip morphology aspects analysed are 
chip teeth segmentation pitch (STP), the 
chip segmentation shear angle (San) and 
chip segmentation frequency (SF).  
 
 

 
 

 
4.3.1 Chip Segmentation pitch (STP) 
Figure 4 shows the surface plot of chip 
segmentation pitch with respect to both 
cutting speed and feed rate respectively. 
The steepness of the STP change with the 
fn is apparent whilst it is less steep with 
respect to vc. 

 

 
Figure 4 Segmented teeth pitch - STP (µm ) vs cutting velocity - vc (m/min) and feed 

rate - fn (mm/rev) 
 

 
4.3.2 Regression Equation – Chip 
Segmentation Pitch  
 
The mathematical relationship between the 
input factors (cutting speed, vc, and the 
feed rate, fn) and the response parameter 
(chip segmentation pitch, STP) is 
expressed as (vix):  
 
STP = 4.67 + 0.1143 vc + 491.3 fn (vix) 
 
The coefficient of determination, of 96.43% 
(Table 7), shows very strong 
representativeness of the data by the fitted 
regression line. 
 

 

 
Table 7. Model summary of 

segmentation pitch 
 

S R-sq R-sq 
(adj) 

R-sq 
(pred) 

10.62   96.43% 93.92% 88.42% 

 
4.3.3 Tool Wear (TW) 
Optical measurements, of the tool wear, 
were taken at different cutting speeds and 
feed rate conditions at the end of each 
machining pass, of 180 mm linear length of 
the workpiece specimen. The dominant 
wear mechanism observed was on the 
flank, followed by crater wear on the rake. 
Increasing cutting speed enhanced thermal 
and chemical activities on the tool chip 
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interface. An increase in mechanical load 
(fn) caused an increase in fracture 
mechanisms. Tool wear, especially flank 
wear, tend to affect the tool geometry 
resulting in significant negative influence 
on the energy use, cutting forces and the 
component surface quality during the 
machining process. It is reported to be the 
main factor which affect the metal cutting 
economics (Karim , et al., 2013), during 
machining operations. Reduced flank wear 
rates result in better tool life, better surface 
finish quality, minimised tooling costs and 
reduced production costs. In this section, 
the effect of the cutting parameters 
selection on tool flank wear is assessed, in 
order to establish which combination of vc 
and fn has more influence on the process. 

The mathematical model, expressing tool 
flank wear as a function of the cutting 
conditions, was developed. Graphical 
presentations, characterising the various 
tool wear functions as they interact with 
energy and specific cutting energy use, are 
presented. 
 
The input parameters versus tool wear 
relationships are plotted on the graphs in 
Figure 5. There is steeper variation of tool 
wear with increasing cutting speed than it 
is with increasing feed rate, as shown on 
the surface plot of tool wear against vc and 
fn (Figure 5). The graph, thus, show the 
dominance of vc in influencing tool wear as 
compared to fn.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Surface plot of tool wear, TW (µm) as a function of cutting speed, vc (m/min) 
and feed rate fn (mm/rev) 

 
4.3.4 Regression Analysis – Tool Wear  
Linear regression analysis was used to 
define the model, explaining the 
relationship of tool wear with the two 
variable input parameters (vc and fn). The 
relationship between tool wear and the 
variable cutting parameters is 
approximated by (x):  
 
TW = -59.0 + 1.704vc + 632fn (x) 
 

Table 8. Model Summary of tool wear 
 

 
The coefficient of determination (R2), of 
99.58% (Table 8), confirms the significance 
of how well the regression line (equation x) 
approximates the real data points 

S R-sq R-sq 
(adj) 

R-sq 
(pred) 

10.46 99.58% 99.28%       98.63% 
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projecting the relationship between the 
predictor variables (cutting speed vc and 
feed rate fn) and the cutting tool wear. An 
R2 of zero means that the dependant 
variable cannot be predicted from the 
independent variable.  
 
4.3.5 Cutting Force (Fx,y,z) 
 
The surface plot of the cutting force and the 
input parameters (vc and fn) is shown in 
Figure 6. It is apparent from the plot that as 
feed rate increases the cutting force 

increases. When the cutting speed 
increases the cutting force tends to 
decrease. Thus, in essence, cutting forces 
tend to generally decrease with increasing 
cutting speed whilst they tend to increase 
with increasing feed rate. Increasing the 
cutting speed enhances the thermo-
mechanical separation process of the 
material, as the heat intensity increases at 
the cutting zone, such that demand for 
separating cutting forces tend to decrease 
as the cutting speed increases.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 Surface plot of main cutting force, Fx (Fz)  [N] vs feed rate, fn [mm/rev] and 
cutting speed vc [m/min] 

 
 

4.3.6 Regression analysis – Cutting 
         force (Fx) 
The cutting force (Fx) regression equation 
is as given by equation (xi), where it is 
denoted as Fx 
Force,  Fx = 97.7 - 0.3139vc + 825.9fn(xi) 
 

Table 9. Model summary for the main 
cutting force (Fx) 

 

S R-sq R-
sq(adj) 

R-
sq(pred) 

26.58   95.41% 92.21% 85.14% 

 
 

The coefficient of determination, of 
95.41%, (Table 9) shows that the model 
effectively represents the data of the 
model.  
 
4.3.7 Surface Roughness    
measurement 
This section present the results of surface 
roughness measurements (Ra, Rz and 
Rmax). Figure 7 shows the variation of 
surface roughness with increasing cutting 
speed. It is apparent, from the graph that 
as cutting speed increases the surface 
roughness decreases. The plot considered 
surface roughness Ra, Rmax and Rz which 
all tended to decrease with increasing 
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cutting speed. The results were consistent 
with the findings by Mawanga (Mawanga, 
2012), who investigated the surface 
integrity of high-speed machining of grade 
4 Ti-alloys.  Average surface roughness 
(Ra) is the most generally considered 

surface roughness quality standard. As 
such the ensuing sections considered Ra 
values of surface roughness.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 Surface roughness – Ra, Rz, Rmax as a function of cutting speed (microns) 
 

Figure 7 presents the variation of surface 
roughness Ra with cutting speed at the 
three feed rates. It is apparent that, as 
cutting speed increases, Ra value 
decreases at all 3 feed rates. Thus, higher 
cutting speeds produce finer surface finish. 
Figure 8 shows the interaction of feed rate 
with both the work piece surface roughness 
and specific cutting energy. The plot shows 
that increasing the feed rate produced 
rougher work piece surfaces, but at the 
same time the specific cutting energy will 
be reducing. This is a typical conflict in 
outcomes favoured by increasing the input 
factor, feed rate. 
 
4.3.8 Regression Equation: Surface 
         Roughness (Ra)  
 
The Regression Equation explaining the 
mathematical relationship between cutting 
speed, feed rate and surface roughness is 
shown in equation (xii): 
 

Ra = 0.1776 - 0.001308vc + 2.607fn (xii) 
 
The coefficient of determination (R2 value 
in Table 10) of 98.90%, shows a very 
strong relationship between the surface 
roughness (response) and the regression 
model predicting it. Thus, the data is very 
close to the fitted regression line. The R-
square of 98.90% and the adjusted R-
square of 98.13% (Table 10), all, indicate a 
good model fit.  
 

Table 10. Model summary of Ra 

 

S R-sq R-
sq(adj) 

R-
sq(pred) 

0.0595   98.90% 98.13% 96.44% 

 
It is apparent that equations (vii) to (xii) are 
all linear. This makes them candidate 
equations for fitting into the goal modelling 
constraints.
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Figure 8. Surface roughness (Ra) and specific cutting energy (SE) vs feed rate (fn) 

 
4. CONCLUSION  
In this study GP approach is discussed, for 
feasibility of use, as an optimisation 
technique and tool for the modelling of the 
multiple objective machining parameters 
predicting challenge, whilst considering the 
subsistence of the diverse and conflicting 
potential outcomes from cutting strategy 
environment change. It provides an 
analytical framework which can be used to 
proffer optimal solutions to multiple and 
conflicting objectives. A feasibility 
assessment on the use of goal 
programming application, in the 
optimisation challenge of machining-based 
manufacturing, was researched on in this 
write-up. A literature study in the 
application of GP, in diverse optimisation 
situations, was conducted. Titanium alloy 
experimental studies were carried out in, 
empirically, generating modelling data for 
the various machining performance 
parameters. Mathematical models were 
developed for the different performance 
outcomes and these were assessed 
against the background of characteristics 
of mathematical models which qualify for 
characterisation of goal programming 
equations. Minitab 19 software was used to 
aid the performance of regression analysis 
on the experimentally generated machining 
data. Each machining parameter was 
analysed and regression equations were, 
respectively, generated. The Regression 
Equation, expresses the mathematical 
relationship of the input factors (cutting 

speed, vc and feed rate, fn) to the response 
parameters (Rawlings, et al., 1998). In this 
study, the response parameters modelled 
were surface roughness, total cutting 
power, Material removal rate, chip teeth 
segmentation pitch, Tool wear, cutting 
forces and specific cutting energy. The 
representativeness, of the data by the fitted 
regression line for each respective 
response parameter, was analysed and 
indicated by the coefficient of determination 
(r2) on the model summary.  Pursuant to the 
study, conducted, the following conclusions 
were adduced:  
 
Goal Programming appear to be a suitable, 
formidable and supple decision-making 
analysis support tool, for use, by the 
modern-day machining-based 
manufacturing planner, who is encumbered 
with multiple conflicting objectives under 
the complex constraining environment of 
opposing performance outcomes when the 
cutting parameters are adjusted. GP 
objective function intends to minimise the 
sum of deviations of the set targets, as 
much as possible as well as a technique to 
minimising priority deviations as much as 
possible. The intention is that all the set 
conditions be achieved as much as 
possible with minimum deviation from the 
set priority. 
  
The discussions above, deriving from 
literature review, clearly project GP as a 
multi-criteria decision-making support tool 
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which aims at simultaneously optimising 
several goals whilst also limiting the extent 
of deviation of each of the objectives from 
the desired set target. This typically maps 
a machining outcomes situation, during the 
machining of titanium alloy. Multiple goals 
arise, during machining production 
planning, due to the need to satisfying the 
diverse outcome scenarios of the change 
of cutting conditions setting. 
    
As a multiple-objective manufacturing 
modelling tool, goal programming provides 
information on the trade-off among several 
objectives which need to be solved 
simultaneously during the manufacturing 
process planning. 
 
Goal Programming, projects itself as one of 
the methods suitable and available for 
modelling machining manufacturing 
process due to its close proximity with 
decision making in practice, by machining 
planners. The technique corresponds 
significantly well to the results of 
behavioural theory of the industry as 
apparently deduced from the studied 
literature. The empirical findings from 
studies on decision-making practice, rather 
is convincing to demonstrate the expedient 
purposefulness of GP as a tool for 
modelling multiple-objective challenge 
situation such as the machining 
parameters selection for the manufacturing 
of titanium alloys. Consistent with further 
development from these findings, further 
studies would be recommended to 
practically test the goal programming 
application models in order to establish the 
consistency of the results deduced from 
practical application of the developed GP 
models from the experimental process.  
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