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ABSTRACT

Optimisation of the manufacturing process parameters, which are often in conflicting orientations, is an important consideration
for actuating efficient production processes in order to improve competitiveness. Efficient machining of the hard-to-process
materials such as Titanium alloy reveals an extensive field of research and has become increasingly significant in fulfilling multiple
requirements of sustainable manufacturing such as ecological, economic and legislative consideration in production activities.
Throughout the past few decades, multi-objective mathematical programming had been a lively area of research in the field of
the manufacturing industry, particularly for purposes of operating conditions optimisation. In this literature-based survey and
experimental study, goal programming is assessed for feasibility of use for predicting and optimising the machining parameters
during the turning of Ti6AI4V components. A comprehensive literature study, about the application environments of Goal
Programming, had been performed. Outside turning experiments were conducted with coated carbide tools at different process
parameter settings. Cutting parameters were characterised against the output parameters. Mathematical Models were developed
using regression analysis, on Minitab 20 Software. The parameters characterisation results and developed mathematical models,
which are all linear in nature, show applicability of goal programming once the goal targets for each machining output performance
parameter are established. Survey results showed the feasibility of goal programming as a tool for predicting machining process
parameters. Future research is also outlined.
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1. INTRODUCTION

Saving energy, conserving resources and
increasing productivity are conflicting
challenges confronting the machining
manufacturing industry of Ti6AI4V (also
known as Grade 5 Ti-alloy) components
today (Kress, 2012). Titanium alloys are
used in the aerospace, medical, defence,
marine and other industries due to their
excellent mechanical and chemical
properties such as high strength-to-weight
ratio, corrosion resistance, high
temperature strength and biocompatibility
properties (Budinski & Budinski, 2010).
Due to these attractive properties the
demand for titanium alloy parts is
increasing. The high intrinsic costs of
processing Ti-alloy, however, remain a
setback towards the widespread use of this
material which is the fourth most abundant
material on earth (Ezugwu & Wang, 1997).
In machining-based manufacturing the
optimisation challenge is related to the

desirability of achieving high material
removal rate; minimising power
consumption; minimising tool wear and
cutting forces whilst simultaneously
improving work piece surface quality.
Balancing the selection of the cutting
parameters such that these conflicting
objectives are simultaneously addressed
bodes well for the sustainability of the
manufacturing process. During machining
of the difficult-to-cut materials such as
grade 5 titanium alloys, factors such as
selection of the best combination of cutting
parameters,  which  optimises the
machining process, relay important
information towards understanding the
process efficiency management.
Manufacturing resource use efficiency is
one of the key factors of sustainability
assessment in a manufacturing
environment (Duflou, et al., 2011).
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The real world of machining-based
manufacturing is mainly faced with the
challenge of balancing multiple conflicting
objectives rather than singular objective,
such as having to achieve minimum tool
wear for example or achieving good
surface finish. Inadvertently, reduced tool
wear is associated with minimum material
removal rate and reduced surface finish. In
the production environment, these
outcomes may be undesirable whilst the
tool wear minimisation is realised. This may
demand that tool wear minimisation be
realised at the same time increasing
material removal rate (productivity) and
increased surface smoothness of the
workpiece. These are typical conflicting
objectives of a machining-based
manufacturing task. This study seeks to
contribute towards sustainable
manufacturing of Ti6Al4V components,
through developing a platform/framework
for efficient machining process planning
using Goal Programming (GP). Goal
programme refers to a mathematical model
comprising linear or non-linear functions
and discrete or continuous variables,
wherein  all  functions have been
transformed into goals. The mathematical
function which have to be attained or
achieved at a specified level is termed the
goal function, whereas, the function which
serves to measure the achievement of the
minimising of undesired goal deviation
variables is termed as the achievement
function (Aouni & Kettani , 2001). The
concept of goal programming is to
transform the initial multiple, and often
conflicting, objectives into a single goal, of
which the model solution yields a satisficing
result to the conflicting objectives in the
manufacturing problem, efficiently and
satisfactorily. Goal normalisation is
performed in order to minimise possible
bias effect of the different measurement
dimension units, as a way of ensuring
achievement of satisfactory solution level
of all the conflicting multiple objectives
under consideration (Winston, 2004). Goal
programming (GP), unlike linear
programming which seeks to maximise or
minimise (optimise) a singular objective
function, minimises the sum of the
deviations between the objective target
values and the actual achieved results. GP

102

Tayisepi 101- 115

and its variant models have been used to
provide solutions to large-scale multi-
criteria decision-making challenges
(Nabendu & Manish, 2012). It affords
taking into consideration simultaneously,
while a decision maker seeks the most
satisficing solution from amongst a set of
feasible solution, several objectives. Itis a
special type of optimising tool which
provides an analytical framework which a
decision maker could employ to proffer
optimal solutions to multiple conflicting
objective problems. According to Sen and
Nandi GP, as a modelling tool, has close
correspondence  with  actual reality
practiced in decision making (Sen & Nandi,
2012). In reality, even on the manufacturing
planning floor, decision makers will be
intent on achieving different goals, usually
formulated as aspiration levels. In each
operation, the intensity with which attempts
are made at attaining the goals may differ
from goal to goal. Thus, different weight
assignments may be given to striving to
attain  different goals. Hence, the
importance of each outcome at a particular
instance. In machining-based production,
at process level, multiple objectives arise
because of different outcomes occurring on
the tool/workpiece/chip interface as a result
of changes made in the cutting parameter
settings. Multiple objectives in machining-
based production businesses, arise
because of the need to fulfilling several
incompatible outcomes at the cutting point.
For example, conditions requiring best
outcome on the work surface may be such
that the tool wears out faster or conditions
that minimise energy consumption are that
productivity is reduced. In fact, the
fundamental concept of goal programming
is whether the goals are achievable or not,
an objective may be outlined in which
optimisation proffers a result which
approaches as close as possible to the
stated goals. The intention of this research
is to establish if this technique can
represent a viable approach to machining
based manufacturing planning, noting that
there is no much publications, of its use, in
the machining industry, particularly those
involved in the machining of Ti6AI4V.

In a number of machining production
shops, decision making about the optimum
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setting of cutting conditions, is
fundamentally, based on past experiences
of the operatives. As such, judgement and
intuition brings in more intricacy and
difficulty. According to Misir and Misir
(2007), the human intellect is not capable
of perceiving, in all details more than seven
parameters, on average, simultaneously.
As such, manufacturing decision making in
the production shops, had long ceased to
be an art wherein the decision maker just
apply mental models to establishing viable
solutions. Rather, scientific decision
making, is applied with mathematical
models being applied to establish solutions
to organisational problems such as
determining optimum machining parameter
settings decision. The main intention is to
further contribute to the sustainable
machining of Ti-alloy components through
enhancing the machining process resource
use efficiency during the planning stage.

1.1 Goal programme optimisation
application in industry and
business survey

Machining manufacturing companies need
to incessantly improve their operations -
processes and products need to be
optimised on a daily basis. Thus, reliable
cutting parameters selection plays a
significant role in today’s machining-based
manufacturing business planning process.
The machining optimisation problem lies in
the fact that, it possesses multiple
constraints which is related to more than
one objective. Usually, with singular
objective optimisation, the achievement of
optimality in one factor lead to the
aggravation of challenges in one or more
other factors. Challenges related to the
requirement of optimising more than one
objective originate from outcomes tending
to trend in different directions (Lee, 1972),
and solving them had been a challenge
bedeviling engineers for a long time.
Typically, the use of a single optimisation
technology, is not sufficiently practical in
dealing with real life machining-based
manufacturing problem. Consequently,
manufacturing engineers frequently find
themselves required to solve
manufacturing planning problems with
several conflicting objective functions.
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Goal Programming and its variants have
been utlised to solve multi-criteria
decision-making problems in many fields
(Sen & Nandi, 2012). The Multi-Disciplinary
Optimisation Technical Committee, of the
United States of American Institute of
Astronautics  (AIAA), explained Multi-
Disciplinary Optimisation as the optimal
design of complex engineering systems
which require analysis that accounts for
interactions amongst the disciplines, or
parts of the system, and which pursues to
synergistically achieve these interactions
(Tamiz & Jones, 2010). Whereas the Multi-
Criteria Decision Making (MCDM) relate to
the solution development of problems
constituted of multiple and conflicting goals
and producing final solutions which
represents a good compromise that is
acceptable to the entire system set of
objectives (Ignizio, 1978). By minimising
the deviations between the target values
and the actual yielded result values, goal
programming is utilised to manage the
optimisation problem of multiple conflicting
objectives (Misir & Misir, 2007). Goal
programming is a part of the multi-criteria
decision analysis tools wherein it is
considered as a branch of the multi-
objective optimisation techniques (Orumie
& Ebong, 2014)). It is utilised to manage
and plan the simultaneous attainment of
conflicting objectives of an operation
process by minimising the variation
(deviation) of the realised results from the
intended or desired targeted results (Sinha
& Sen, 2011). Thus, as a decision-making
support technigue, Goal Programming
(GP) is used in the optimisation of several
objective goals which in most instances will
be in conflict — where in the attainment of
one goal tend to aggravate the situation of
the other objectives. According to Sinha
and Sen, the intention of GP is to minimise
the achievement of each actual goal level,
such that if no-achievement is pushed to
zero, then the attainment of the goal have
effectively been realised (Sinha & Sen,
2011). GP is an analytical special
technique framework that decision makers
could use to provide optimal solutions to
conflicting multiple objective production
planning problems. In this manner, GP
would provide solution and information for
utilisation by the decision makers (Dantzig,
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1948; Charnes & Cooper, 1961; Lee |,
1972). A number of authors such as, Lin in
concurrence with Orumie and Ebong
proposed the application of Goal
Programming in a number of articles to
solve a myriad of problems (Orumie &
Ebong, 2014,; Lin , 1980). The noted
limitations of the utilisation of the Linear
Goal Programming (LGP) models had
been the non-availability of an algorithm
capable of attaining optimality in
reasonable time, however.

Generally speaking, optimisation explains
the selection of the best available option
from a wide range of possible options.
Manufacturing  business  organisation
objectives, in practice, may vary dependent
upon the philosophy and characteristics of
the Dbusiness, operating environmental
conditions, inter alia. Profit maximisation is
regarded as the main sole objective of the
business management. However, due to
the pressure from society and statutory
regulations, the firm will have other
objectives — thus multiple objectives which
may include high product quality,
operations employees’ safety, social
contributions, good industrial and labour
relations, maximising profits, among
others. At machining process level, the
multiple objectives may be achieving high
productivity level, increasing material
removal rate, minimising tool wear,
achieving high surface quality, minimising
energy use, maintaining good workpiece
and tool bit integrity, etc. All these
contrasting objectives would require the
machine operating parameters to be set at
different level in order to realise them. Goal
programming had been used to solve
multiple-and-conflicting objective
optimisation problems in many fields such
as Mutual Fund Portfolio selection (Sharma
& Sharma, 2006), Farm cropping land
determination (Jafari , et al., 2008),
Plantation space occupancy planning
(Nabendu & Manish, 2012) and modeling
3D trade-offs in concurrent engineering
problems (Charles, et al, 2005).
Fortenberry and Mitry applied GP to model
and address facility location problem with
multiple competing objectives, whilst
Kornbluth employed GP modelling for
industrial and economic planning challenge
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(Kornbluth, 1973), inter alia. Premchandra,
(1993) modelled decision making platform
for large number of interrelated activities in
project planning and scheduling. In solving
a multi-objective resource planning and
network-based optimisation challenge,
Shim and Chun (1991) utilised goal
programme modelling. In soliciting optimal
combinations of diverse fertilisers for the
soil sustaining a rice crop, Karbasi, et al.,
(2012) utilised goal programme modelling
to a good effect. Kornbluth (1973)
presented on goal programming use for
industrial  and  economic  planning
purposes. Nhantumbo and Kowero (2006)
developed a multi-objective production
planning model for minimising production
penalties, whilst maximising profitability.

Alp, et al (2011) wused linear goal
programme modelling in  surveying
engineering for vertical network

adjustment. Deducing from these earlier
studies, Goal Programming may be more
advantageous to use as a technique in
dealing with practical manufacturing
problems encountered in machineshops
because it tends to mirror the way humanity
make decisions. It is apparent that it
presents a feasible approach to production
planning, however, it is not in widespread
use amongst manufacturing companies
particularly  of  discrete  machined
components. It affords the decision maker
the scope to incorporate diverse
circumstances surrounding a real life
decision situation through modelling the
goal levels and priorities according to what
instance require to be emphasised on at
that particular instance. Yet, typically, it
(GP) had not been used extensively in
solving cutting parameter selection
decisions during the machining process
planning of Ti6AI4V.

1.2 Goal programme modeling
approach

Multi-objective modelling techniques - in
the purview of manufacturing - were in the
recent past formulated and solved, to
provide information on the compromise
among conflicting and competing multi-
objectives. The goal programming (GP)
modelling approach does not seek to
directly maximise or minimise the objective
function, as happen in linear programming.
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Instead, GP seeks to minimise the
deviations between the looked-for goals
and the actual results obtained in
accordance to the priorities set (Alp, et al.,
2011). Thus, as a modelling technique, GP
is used to manage a cluster of conflicting
objectives of the modelled situation by
minimising the deviations of the realised
results from the target result values. The
initial objectives are formulated anew as a
set of constraints with target values
accompanied by two auxiliary variables,
being the positive deviation (d*) and
negative deviation (d’), representing the
distance from the set target values. The
intention of GP is to minimise the
deviations from achieving set goals, in a
hierarchical order, in such a manner that
goals of higher order importance receive
first attention before goals of lower order
priority successively. Goals of first priority
are minimised in the first place, then using
the attained feasible solution outcome in
this stage, goals of the second priority are
minimised successively and so on.

Multiple conflicting objectives, in
machining-based production arise because
of several opposing outcomes which result
when, say the cutting parameters are
adjusted on the machine in order to realise
a particular outcome. Typically, for
example, generally increasing the cutting
conditions, say cutting speed, feed rate and
depth of cut, produces high material
removal rate during a cutting operation
(Oosthuizen, et al., 2013). This result is a
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positive outcome, however, it will also be
accompanied by increased tool wear and
rough surface quality of the job — which are
undesirable outcomes. The basic notion of
goal modelling is that, whether the set
goals are achievable or not, the objective
may be stated in which optimisation
proffers a result which comes as near as
feasible to the stated goals. As a decision-
making support technique, goal
programming aims at optimising numerous
(up to 120, software dependent) goals and
simultaneously minimise the deviation of
each from the intended target objective
(Sen & Nandi, 2012). The intention of goal
programming, is to limit the deviations in a
hierarchical order system such that the
goals of principal importance, for that
machining operation process, receive first
priority focus of attention, whilst those of
second order of importance receive second
priority attention, and goals of eventual
orders of importance, respectively, receive
eventual priority order attention as such.
Successively, using the feasible solutions
of the highest order priority of goals,
objectives of the eventual priority order of
importance are respectively focused on
and minimised (Orumie & Ebong, 2014).
Lower ordered goals would only be
considered after the satisfaction of the
higher ordered goals (Sen & Nandi, 2012).

The general steps of developing a GP is
structured, thus (Rifai, 1996; Orumie &
Ebong, 2014), shown in Table 1.

Table 1. Steps of developing goal programme structure

SIII?)p Step process
1 Discover the goals and convert them to constraints by introducing
deviational variables.
5 Scrutinise the goals and establish the deviational variables exactly required
for them.
3 Rank the goals in order of importance and pre-emptive priority factor
assigned to each of them.

Where ties exist in priority ranking, assign, to each of the deviational

4 ) . . h
variables in the priority, a weight to break such.
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The general variants of the GP modelling
are firstly the pre-emptive weighted priority
goal programming, wherein both goal
general expression of the model would be
as presented in equation (i):

Minz = Y wip;(d; +d) (i)
n

st Z ajjXij +dl_ —d:- = bi (l =
J

1,2,...,m) (i)

xl-j, dl_' d:- = O,Wl' > 0 (|||)

(=12 ,m j=1,23..,n) (V)

Where, d;, df are the negative and
positive deviation variables, b; is the goal
target, p; is the pre-emptive priority factor,
w; is the goal priority weighting factor, z is
the achievement function.

The second variant of the goal programme
is called the pre-emptive or lexicographic
goal programming (Orumie & Ebong,
2014,; 1Jiri, 1965) model. This is employed
when the decision maker may not be able
to determine precisely the relative
importance of the goals in advance.
Instead, the goals are ranked in order of
importance with the most important goal
being assigned first priority. The second
most important goal being assigned
second priority, e.tc. The solution
procedure starts by concentrating on
meeting the most important goal and
successively in that manner until the least
important goal priority is addressed. The
prioritisation of the objective functions is
such that the achievement of the first goal
is far important than the attainment of the

3.0 Materials and Methods

The ensuing sections present the research
strategies used in the empirical study.
Grade 5 Titanium alloy (Ti6Al4V)
machining experiments were conducted to
generate primary data which would be fed
into Minitab software package for further
analysis — Characterisation of the cutting
parameters against the output parameters,
generate mathematical models of the
performance parameters as influenced by
the input parameters through regression
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prioritisation and pre-emptive weights
assignment are applied in the formulation
of the model (Orumie & Ebong, 2011). The
second goal, which itself is far important
than the third goal attainment, and so on.
By this arrangement lower order goals can
only be attained if they do not degrade the
solution achieved by higher priority goals.
The pre-emptive Goal Programme model
achievement is expressed thus, (Orumie &
Ebong, 2011):

Leximinz = ¥¥p; (df +d}) v)

The third variant of the GP modelling is
whereby weights are attached to each of
the objectives in order to quantify the
relative importance of the deviations from
their goal targets. This is termed the
Weighted Goal Programming (WGP) (Ken
& Perushek, 1996)). Using WGP several
objectives can be simultaneously handled
with specific numeric goals established for
each of the objectives and a solution which
comes as close to each of the goals can be
determined (Marler & Arora, 2004). The
WGP model algebraic expression can be
expressed as shown in equation (vi):

Minz = Z:n(wi_di' +witd}) (vi)
Where w;” and w;" are the numeric weights
associated with the respective deviational
variables (= 0), denoting how far the
decision is from the target goal below or
above the target value.

analysis. Regression equations would then
be fed into the Lindo/Lingo software
platform, after being converted into goal
programming models, for the prediction of
cutting parameters through an iterative
process, once the expected performance
standard for the output variable are
entered.

3.1 Experimental Set-up and Design

Outside turning  experiments  were
conducted on a precision Efamatic CNC
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lathe machine with the following features:
Model is Efamatic RT-20 S; Slant Bed CNC
lathe Machining Centre; maximum spindle
speed of 4500 RPM; Main motor power, AC
11/15 kW; Machine weight, 3.8 tonnes;
Maximum bar stock, 75 mm; Double axes
with respective travels of 260 mm diameter
on X-axis and 450 mm on the Z-axis. The
workpiece material is diphase (Dabrowski,
2011) titanium alloy, Ti6Al4V (Grade 5

titanium alloy) which was supplied

in

annealed condition at 36 HRC as a solid
round bar (@ = 75.4 mm x 250 mm long).
The work piece chemical composition and
mechanical strength characteristics (as per

materials certificate) are presented

Tayisepi 101- 115

Tables 2 and 3 respectively.

in

A 0.5 mm initial cut was conducted before
the experiment iterations were started in
order to remove and eliminate any prior
processing
uneven surface trueness and other surface
defects which may adversely affect the

machining results (Kalpakjian &

induced

residual

stresses,

Schmidt, 2001). The cutting tip used for the
cleaning cut was not involved in the
experiment iterations.

Table 2. Chemical compaosition of Titanium alloy (Ti6AlI4V) material used

Element

Al

V

C Fe

N

O

H

Others

Ti

% Content

6.0

4.1

0.02 0.14

0.01

0.16

0.001

0.5

89.069

Table 3. Mechanical strength properties of the Ti6AI4V alloy used

Mechanical Treatment Tensile Yield Elongation Reduction of

Characteristic Condition Strength Strength (%) Area (%)
(MPa) (MPa)

State/Value Annealed 969 847 13 28

The research considered the simultaneous
variation of cutting speed and feed rate
(machining parameters) on the tool life,

surface

integrity,

cutting forces,

chip

formation and energy use/consumption as
responses (performance factors). Table 4
presents the turning parameters and
condition levels on which the experiments

were
experimental

conducted.
design,

As

regards
the

the
variable

parameters in the turning experiments
were: six cutting speeds (50, 70, 100, 150,
200, and 250 m/min), and three feed rates

(0.1, 0.2,

and

0.3

respectively). A set of

mm/revolution

eighteen (18) experiments were conducted
using eighteen tools to cut the work
specimen materials at a constant depth of
0.5 mm. Collectively a total of seventy-eight
(78) machining cutting tests/runs were
conducted.
machining power (for machining energy),
cutting and feed forces and surface
roughness are measured and recorded.
Tool wear was measured at the end of
each machining pass of 180 mm, specimen
length. The experimental set-up and the
machine and data collection equipment
connection,
presented in Figure 1.

schematic arrangement,

In each cutting test,

the

is

Table 4. Machining parameters and conditions of the turning experiments

Parameter

Condition

Coolant

Cutting Speed (1)
Feed/rev (fn)
Depth of Cut (DoC)

50, 70, 100, 150, 200 and 250 m/min.
0.1 — 0.3 mm/rev in 0.1mm steps.

0.5 mm Constant.
Flood coolant.
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Data acquisition

Signal amplifiers
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Forces signal acquisition
computer and software
(online data)

Workpiece

T500 Hommel surface
roughness tester

board
Y & |
|

Power signal acquisition computer
and software (online data)

3 phase power meters
(online data)

T8000 Hommel surface
roughness tester (offline data)

Figure 1. The experimental set-up

4.0 RESULTS:

4.1 Parameter characterisation and
observation during the machining
of Tl 6al4v

This section present results of the

characterisation, of cutting parameters on

the response parameters. Regression

equations models, developed, and
analyses are also presented.

3.0
ToP (KW) 25
2.0

1.5

fn

4.1.1 Total cutting power during
machining (ToP)

Figure 2 shows the 3-dimensional plot of
the feed rate f,, cutting speed, v, and total
cutting power of the machine, ToP. It is
apparent that the total machining power
increases with both increasing cutting
speed and feed rate. However, the
increase with respect to cutting speed is
steeper as compared to the increase with
feed rate.

240

vC

0.3

Figure 2 Surface plot of total machine power —=ToP (kW) vs cutting speed - vc (m/min)
and feed rate - f, (mm/rev)
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4.1.2 Regression Analysis: Total
Cutting Power During Machining
(ToP)

The Regression Equation, expressing the
mathematical relationship of the input
factors (v and f,) to the response
parameter (total machining power), is
shown on equation (vii). The strong
representativeness, of the data by the fitted
regression line, is indicated by the
coefficient of determination (r?) of 96.49%
on the model summary of the total
machining power (Table 5). That means
the predictors explain 96.49% of the
response (total machining power).

ToP =0.9115 + 0.005535 v, + 2.268 fu(vii)

450

300
MRR

150

0.2
fn

Tayisepi 101- 115

Table 5. Model summary of total
machining power (ToP)

S R-sq R- R-
sq(adj) | sq(pred)
96.49% | 96.49% | 94.04% | 88.64%

4.2.1 Material removal rate (MRR)

The surface plot of the material removal
rate versus cutting speed and the feed rate
is shown in Figure 3. This summarises the
joint influence of the input parameters, v
and f,on the response MRR. It is apparent
that MRR is positively influenced by both
increasing vc and f,. The influence of v
tend to be more pronounced, however,
when compared with the influence of f.

240

vC

0.3

Figure 3 Surface plot of Material removal rate - MRR (mm?3min) as a function of cutting
speed - vc (m/min) and feed rate - f, (mm/rev)

4.2.2 Regression equation: Material

removal rate (MRR)

The Regression Equation, relating the input
factors to the response function (MRR), is
given by (viii):

MRR =-157.1 + 1.178v, + 926f, (viii)

109

The coefficient of determination of 95.93%
Table 6 shows very strong
representativeness of the data by the fitted
regression line
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Table 6. Model summary of material removal rate

S R-sq

R-sq(adj)

R-sq(pred)

29.26 95.93%

93.09%

86.83%

4.3 Chip Morphology

The chip morphology aspects analysed are
chip teeth segmentation pitch (STP), the
chip segmentation shear angle (San) and
chip segmentation frequency (SF).

150

STP
100

50

0.1
0.2
fn

4.3.1 Chip Segmentation pitch (STP)
Figure 4 shows the surface plot of chip
segmentation pitch with respect to both
cutting speed and feed rate respectively.
The steepness of the STP change with the
fn Is apparent whilst it is less steep with
respect to ve.

240

180
VvC

120

60
0.3

Figure 4 Segmented teeth pitch - STP (um ) vs cutting velocity - v (m/min) and feed
rate - f, (mm/rev)

4.3.2 Regression
Segmentation Pitch

Equation - Chip

The mathematical relationship between the
input factors (cutting speed, v¢, and the
feed rate, fn) and the response parameter
(chip segmentation pitch, STP) is
expressed as (Vix):

STP =4.67 + 0.1143 v + 491.3 f,, (ViX)

The coefficient of determination, of 96.43%
(Table 7, shows very  strong
representativeness of the data by the fitted
regression line.

110

Table 7. Model summary of
segmentation pitch

S R-sq R-sq R-sq
(ad)) (pred)
10.62 | 96.43% | 93.92% | 88.42%

4.3.3 Tool Wear (TW)

Optical measurements, of the tool wear,
were taken at different cutting speeds and
feed rate conditions at the end of each
machining pass, of 180 mm linear length of
the workpiece specimen. The dominant
wear mechanism observed was on the
flank, followed by crater wear on the rake.
Increasing cutting speed enhanced thermal
and chemical activities on the tool chip
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interface. An increase in mechanical load
(fn) caused an increase in fracture
mechanisms. Tool wear, especially flank
wear, tend to affect the tool geometry
resulting in significant negative influence
on the energy use, cutting forces and the
component surface quality during the
machining process. It is reported to be the
main factor which affect the metal cutting
economics (Karim , et al., 2013), during
machining operations. Reduced flank wear
rates result in better tool life, better surface
finish quality, minimised tooling costs and
reduced production costs. In this section,
the effect of the cutting parameters
selection on tool flank wear is assessed, in
order to establish which combination of v
and f, has more influence on the process.

600

™ 400

200

0.1
0.2
fn
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The mathematical model, expressing tool
flank wear as a function of the cutting
conditions, was developed. Graphical
presentations, characterising the various
tool wear functions as they interact with
energy and specific cutting energy use, are
presented.

The input parameters versus tool wear
relationships are plotted on the graphs in
Figure 5. There is steeper variation of tool
wear with increasing cutting speed than it
is with increasing feed rate, as shown on
the surface plot of tool wear against v; and
f. (Figure 5). The graph, thus, show the
dominance of v¢ in influencing tool wear as
compared to fi.
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180
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120

60
0.3

Figure 5 Surface plot of tool wear, TW (um) as a function of cutting speed, vc (m/min)
and feed rate f, (mm/rev)

4.3.4 Regression Analysis — Tool Wear
Linear regression analysis was used to
define the model, explaining the
relationship of tool wear with the two
variable input parameters (vc and f,). The
relationship between tool wear and the
variable cutting parameters is
approximated by (x):

TW = -59.0 + 1.704v, + 632f, (X)
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Table 8. Model Summary of tool wear

S R-sq R-sq R-sq
(ad)) (pred)
10.46 | 99.58% | 99.28% | 98.63%

The coefficient of determination (R?), of
99.58% (Table 8), confirms the significance
of how well the regression line (equation x)
approximates the real data points
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projecting the relationship between the
predictor variables (cutting speed vc and
feed rate f,) and the cutting tool wear. An
R? of zero means that the dependant
variable cannot be predicted from the
independent variable.

4.3.5 Cuttlng Force (Fx,y,z)

The surface plot of the cutting force and the
input parameters (vc and f,) is shown in
Figure 6. It is apparent from the plot that as
feed rate increases the cutting force
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increases. When the cutting speed
increases the cutting force tends to
decrease. Thus, in essence, cutting forces
tend to generally decrease with increasing
cutting speed whilst they tend to increase
with increasing feed rate. Increasing the
cutting speed enhances the thermo-
mechanical separation process of the
material, as the heat intensity increases at
the cutting zone, such that demand for
separating cutting forces tend to decrease
as the cutting speed increases.

240

180
VvC
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Figure 6 Surface plot of main cutting force, Fx (F;) [N] vs feed rate, f, [mm/rev] and
cutting speed v [m/min]

4.3.6 Regression analysis — Cutting
force (Fx)

The cutting force (Fy) regression equation

is as given by equation (xi), where it is

denoted as F«

Force, Fx=97.7 - 0.3139v, + 825.9f,(xi)

Table 9. Model summary for the main
cutting force (Fx)

S R-sq R- R-

sq(adj) | sq(pred)
26.58 | 95.41% | 92.21% | 85.14%

The coefficient of determination, of
95.41%, (Table 9) shows that the model
effectively represents the data of the
model.

4.3.7 Surface Roughness

measurement

This section present the results of surface
roughness measurements (Ra, R, and
Rmax). Figure 7 shows the variation of
surface roughness with increasing cutting
speed. It is apparent, from the graph that
as cutting speed increases the surface
roughness decreases. The plot considered
surface roughness Ra, Rmax and R; which
all tended to decrease with increasing
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cutting speed. The results were consistent
with the findings by Mawanga (Mawanga,
2012), who investigated the surface
integrity of high-speed machining of grade
4 Ti-alloys. Average surface roughness
(Ra) is the most generally considered

Surface roughness, R, [pm]

I
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surface roughness quality standard. As
such the ensuing sections considered Ra
values of surface roughness.

= Ra @ fn = 0.1 mm/rev

== Ra @ fn = 0.2 mm/rev
Ra @ fn =0.3 mm/ frev
mwem Rz @ fn=o.1mm/rev
=4=Rz @ fn=0.2mm/frev
Rz @ fn=o.3mm/rev

Rmax @ fn = 0.1 mm/rev
Rmax @ fn = 0.2 mm/rev

Rmax @ fn = 0.3 mm/rev

o 50 100

150

200 250 300

Cutting speed, v, [m/min]

Figure 7 Surface roughness — Ra, Rz, Rmax @s a function of cutting speed (microns)

Figure 7 presents the variation of surface
roughness Ra with cutting speed at the
three feed rates. It is apparent that, as
cutting speed increases, Ra value
decreases at all 3 feed rates. Thus, higher
cutting speeds produce finer surface finish.
Figure 8 shows the interaction of feed rate
with both the work piece surface roughness
and specific cutting energy. The plot shows
that increasing the feed rate produced
rougher work piece surfaces, but at the
same time the specific cutting energy will
be reducing. This is a typical conflict in
outcomes favoured by increasing the input
factor, feed rate.

4.3.8 Regression Equation: Surface
Roughness (Ra)

The Regression Equation explaining the
mathematical relationship between cutting
speed, feed rate and surface roughness is
shown in equation (xii):
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Ra=0.1776 - 0.001308v. + 2.607f, (xii)
The coefficient of determination (R? value
in Table 10) of 98.90%, shows a very
strong relationship between the surface
roughness (response) and the regression
model predicting it. Thus, the data is very
close to the fitted regression line. The R-
square of 98.90% and the adjusted R-
square of 98.13% (Table 10), all, indicate a
good model fit.

Table 10. Model summary of Ra

S R-sq R- R-
sq(adj) | sq(pred)
0.0595 | 98.90% | 98.13% | 96.44%

It is apparent that equations (vii) to (xii) are
all linear. This makes them candidate
equations for fitting into the goal modelling
constraints.
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Figure 8. Surface roughness (Ra) and specific cutting energy (SE) vs feed rate (f,)

4. CONCLUSION

In this study GP approach is discussed, for
feasibility of use, as an optimisation
technique and tool for the modelling of the
multiple objective machining parameters
predicting challenge, whilst considering the
subsistence of the diverse and conflicting
potential outcomes from cutting strategy
environment change. It provides an
analytical framework which can be used to
proffer optimal solutions to multiple and

conflicting  objectives. A  feasibility
assessment on the wuse of goal
programming application, in the

optimisation challenge of machining-based
manufacturing, was researched on in this
write-up. A literature study in the
application of GP, in diverse optimisation
situations, was conducted. Titanium alloy
experimental studies were carried out in,
empirically, generating modelling data for
the wvarious machining performance
parameters. Mathematical models were
developed for the different performance
outcomes and these were assessed
against the background of characteristics
of mathematical models which qualify for
characterisation of goal programming
equations. Minitab 19 software was used to
aid the performance of regression analysis
on the experimentally generated machining
data. Each machining parameter was
analysed and regression equations were,
respectively, generated. The Regression
Equation, expresses the mathematical
relationship of the input factors (cutting
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speed, v; and feed rate, f,) to the response
parameters (Rawlings, et al., 1998). In this
study, the response parameters modelled
were surface roughness, total cutting
power, Material removal rate, chip teeth
segmentation pitch, Tool wear, cutting
forces and specific cutting energy. The
representativeness, of the data by the fitted
regression line for each respective
response parameter, was analysed and
indicated by the coefficient of determination
(r?) on the model summary. Pursuant to the
study, conducted, the following conclusions
were adduced:

Goal Programming appear to be a suitable,
formidable and supple decision-making
analysis support tool, for use, by the
modern-day machining-based
manufacturing planner, who is encumbered
with multiple conflicting objectives under
the complex constraining environment of
opposing performance outcomes when the
cutting parameters are adjusted. GP
objective function intends to minimise the
sum of deviations of the set targets, as
much as possible as well as a technique to
minimising priority deviations as much as
possible. The intention is that all the set
conditions be achieved as much as
possible with minimum deviation from the
set priority.

The discussions above, deriving from
literature review, clearly project GP as a
multi-criteria decision-making support tool



ZJST. Vol.15 [2020]

which aims at simultaneously optimising
several goals whilst also limiting the extent
of deviation of each of the objectives from
the desired set target. This typically maps
a machining outcomes situation, during the
machining of titanium alloy. Multiple goals
arise, during machining production
planning, due to the need to satisfying the
diverse outcome scenarios of the change
of cutting conditions setting.

As a multiple-objective manufacturing
modelling tool, goal programming provides
information on the trade-off among several
objectives which need to be solved
simultaneously during the manufacturing
process planning.

Goal Programming, projects itself as one of
the methods suitable and available for
modelling machining manufacturing
process due to its close proximity with
decision making in practice, by machining
planners. The technique corresponds
significantly well to the results of
behavioural theory of the industry as
apparently deduced from the studied
literature. The empirical findings from
studies on decision-making practice, rather
is convincing to demonstrate the expedient

purposefulness of GP as a tool for
modelling  multiple-objective  challenge
situation such as the machining

parameters selection for the manufacturing
of titanium alloys. Consistent with further
development from these findings, further
studies would be recommended to
practically test the goal programming
application models in order to establish the
consistency of the results deduced from
practical application of the developed GP
models from the experimental process.
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