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ABSTRACT 

Credit risk mitigation is an area of renewed interest due to the 2007-2008 financial crises and thus masses of data are collected by 
the financial institutions. This has left the risk analysts with a daunting task of adequately determining the credit worthiness of an 
individual. In the search for highly efficient credit scoring models, financial institutions can adopt sophisticated machine learning 
techniques. We employ the AUROC approach to make a comparative analysis of machine learning methods of classification by 
performing 10-fold cross validation for model selection on the German Credit data set from the UCI database. The results show that 
Lasso regression provides the best estimation for default with an AUROC of 0.8048 followed by the Random Forest model with 0.7869 
AUROC. The widely used logit model performed better than the Support Vector Machine (Linear) with 0.7678 and 0.7581 AUROC 
respectively. Moreover, by the Kolmogorov-Smirnov test, we proved that the other machine learning techniques outperform the widely 
used logit model in how well the model is able to classify “good” class from “bad” class. 
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1.0 INTRODUCTION  

There is a global competition of banks on 
market share and an antagonism to gain 
competitive advantage. Banks and financial 
bodies have been seen to suffer from high 
levels of non-performing loans (Moti, 
Masinde, Mugenda et al., 2013). Such 
customer behaviour has affected the viability 
and sustainability of these financial bodies 
and weakened their growth. A number of 
risks can cause a bank to fail (Moti, Masinde, 
Mugenda et al., 2013), but failure to manage 
credit risk can cause banks to close and lead 
to its failure to compensate its clients. 

The financial markets are dynamic and 
spontaneous this then calls for constant 
monitoring and perpetual change of the 
firms’ credit policy. Loaning money to a bad 
client is costly not only to the banks but a loss 

of equities by the stakeholders (Hooman, 
Marthandan and Karamizadeh, 2013). The 
loss has always been the failure to predict 
payment defaulting prior the event. 
(Wehinger, 2012) assumed that the financial 
crisis has brought other financial woes such 
as fraud and banking scandals. Such 
maladies have brought low confidence in the 
financial industry and raised anxiety in the 
structural flaws in the methods used by 
banks to function and the way they are run.  

One of the critical arms of banking is the 
credit function. The interest percentage is the 
main source of revenue for each and every 
bank. It is also a reality that risk is intrinsic in 
each and every loan transaction. Credit risk 
comes as a result of a debt not being cleared 
by the borrower. This causes cash flow jams, 
principal and interest leakages and a lot of 
collection costs. Credit risk assessment aids 
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in objective decision making, to decide 
whether to lend or not and how much to 
charge for the loan. The construction and 
implementation of predictive models have 
shown to be a powerful strategy tool (Moin 
and Ahmed, 2012). At the heart of modern 
predictive analytics are various machine 
learning algorithms that extract hidden 
insights from masses of data. The data may 
be multimedia data, text data, web data, time 
series data and spatial data (Moin and 
Ahmed, 2012). 

Harnessing this huge data helps the bank 
management to make profitable decisions 
daily (Sudhakar, Reddy and Pradesh, 2016). 
The masses of structured and unstructured 
data leave the human analyst with a daunting 
of transforming this data into information. As 
a result, data mining techniques continue to 
gain popularity (Sudhakar, Reddy and 
Pradesh, 2016). The growth of mobile and 
internet banking in Africa has left the door 
ajar to financial institution leveraging big-
data in credit risk mitigation.     

In this paper we seek to explore the customer 
characteristics that signal the capability of a 
customer to default, and also discover the 
best credit modelling algorithm that 
effectively models loan delinquency and 
credit worthiness using German Credit Data 
from the UCI Machine Learning Repository.  

2.0 MATERIALS AND METHODS 

2.1 Logit Regression 

The logit model is one of the most widely 
used algorithms in credit scoring. It is a 
unique case of the general linear model and 
in certain respects comparable to linear 
regression (Bhatia et al., 2017). However, 
unlike general linear regression, logit models 
are primarily for predicting dichotomous 
dependent outcome rather than a continuous 
outcome. This is achieved by restricting the 
output from [−∞, + ∞] to a probability 

between 0 and 1, owing to a logistic 
transform.  The logistic function is given by 
the inverse-logit: 

 

 

𝑙𝑜𝑔𝑖𝑡−1(𝛼) =
1

1 + 𝑒(−𝛼)
=  

𝑒𝛼

𝑒𝛼 + 1
            [1] 

For a training set of 𝑁 data points 𝐻 =
{(𝑥𝑖, 𝑦𝑖)}𝑖=1

𝑁  and 𝑥𝑖 ∈  ℝ𝑛 as the input 

variables. The aim of the logistic regression 
technique corresponding to a binary 

outcome 𝑦𝑖 ∈ {0, 1} is to estimate 𝑃(𝑦 =
1 | 𝒙)  as follows: 

 𝑃(𝑦 = 1 | 𝒙) =  
1

1 + 𝑒
(−(𝑤0+𝒘𝑇𝒙))

 , [2] 

and, 

𝑃(𝑦 = 0 | 𝒙)  =   
𝑒−(𝑤0+𝒘𝑇𝒙)

1 + 𝑒−(𝑤0+𝒘𝑇𝒙)
 ,    [3] 

where 𝑤0 is the intercept, 𝒘 is the parameter 
vector and 𝒙 ∈  ℝ𝑛 is a n-dimensional vector. 

To estimate the parameters  𝑤0 and 𝒘, we 
employ the maximum likelihood technique. 
With the probability of observing either 
outcome given as  

𝑃(𝑦 | 𝒙) = 𝑃(𝑦 = 1 | 𝒙)𝑦(1 − 𝑃(𝑦 = 1 | 𝒙)1−𝑦 ,  

 [4] 

The rationale of this procedure describes the 
maximization of the likelihood of observing 
the data set 𝐻, given the observations are 
drawn independently, which yields  

  ∏ 𝑃(𝑦𝑖 = 1 | 𝒙𝑖)𝑦𝑖(1 − 𝑃(𝑦𝑖 = 1 | 𝒙𝑖)1−𝑦𝑖

𝑵

𝒊=𝟏

,  

[5] 

The log-likelihood is then given as: 

  𝐿𝐿 =  ∑ 𝑦𝑖 log(𝑃(𝑦𝑖 = 1 | 𝒙𝑖)) + (1 − 𝑦𝑖) log(

𝑁

𝑖=1

1

− 𝑃(𝑦𝑖 = 1 | 𝒙𝑖))  [6] 

The log-likelihood statistic is a performance 
measure of unexplained information after 
model fitting, making it comparable to the 
residual sum of squares. The criterion of a 
performance measure is given by the 
magnitude of log-likelihood, where the larger 
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the statistic, the more unexplained 
information there is.(Field, Miles and Field, 
2013).  

 

2.2 Lasso-Regularized Regression  

Least Absolute Shrinkage and Selection 
Operator (Lasso) is a regression technique 
that couples regularization with variable 
selection in order to improve the prediction 
power of the resulting model.  For an input 

space 𝑋 ∈  ℝ𝑁 and a measurable 𝑌 ∈  ℝ  we 

consider a family of linear hypotheses 𝐺 =
{𝑥 ↦ 𝒘 ∙ 𝒙 + 𝑏: 𝒘 ∈ ℝ𝑵, 𝑏 ∈ ℝ}. Let training 

sample 𝑆 = {(𝑥1, 𝑦1), … . . , (𝑥𝑚, 𝑦𝑚)} ∈ (𝑋 ×
𝑌)𝑚. The objective of Lasso is to minimise 

the empirical squared error on  𝑆 with the 
regularization term regulated by the 𝐿1-norm 
of the weight vector.  

 min
(𝒘,𝑏)

𝐹(𝒘, 𝑏) = 𝜆‖𝒘‖1

+ ∑(𝒘 ∙ 𝑥𝑖 + 𝑏 − 𝑦𝑖)2

𝑚

𝑖=1

   [7] 

where 𝜆 is a positive parameter. Equation [7] 
is an optimization problem since both the 
‖∙‖1 and the empirical error are convex. (The 
subject of convex norms is beyond the scope 
of this paper). Therefore, the optimization for 
equation [7] can be written as  

   min
(𝒘,𝑏)

 ∑(𝒘 ∙ 𝑥𝑖 + 𝑏 − 𝑦𝑖)2

𝑚

𝑖=1

      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ‖𝒘‖1

<  𝜓   

   [8]   

where 𝜓 is a positive parameter.  

 

2.3 Support Vector Machines (SVMs) 

SVM is one of the most effective Artificial 
Intelligence (AI) algorithms for typical two-
class classification problems. SVMs 
algorithm comes with a unique set of key 
concepts:  

 Maximum margin 
hyperplane to find a linear 
classifier through 

optimization 
 Kernel trick to expand up 

from linear classifier to a 
nonlinear one 

 Soft-margin to cope with 
the noise in the data. 

(Haltuf, 2011). However, we shall delve into 
the basics for typical binary classification 

tasks. For a training sample 𝑆 =
{(𝑥1, 𝑦1), … . . , (𝑥𝑚, 𝑦𝑚)} where 𝑥𝑖 ∈ ℝ𝒏 and 

𝑦𝑖 ∈ {+1, −1}. For a linearly separable 
scenario the data points are properly 
separated by, 

 〈𝑤 ∙ 𝑥𝑖〉 + 𝑏 ≥  +1 𝑓𝑜𝑟 𝑦𝑖 = +1  [9] 

〈𝑤 ∙ 𝑥𝑖〉 + 𝑏 ≤  +1 𝑓𝑜𝑟 𝑦𝑖 = −1  [10]   

Combining [9] and [10] yields the following 
inequality: 

  𝑦𝑖(〈𝑤 ∙ 𝑥𝑖〉 + 𝑏) − 1 ≥ 0 𝑓𝑜𝑟 𝑖 = 1, … . . , 𝑚  [11] 

The objective of SVM is to find a hyperplane 
that that maximizes its distance from the 
nearest point  𝑥𝑖  while separating the data 
points for which 𝑦𝑖 = +1 and  𝑦𝑖 = −1. This 
is achieved by finding the optimal solution to: 

 min
𝒘,𝑏

1

2
𝒘𝑇𝒘      𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  𝑦𝑖( 〈𝒘 ∙ 𝑥𝑖〉 + 𝑏) −

1 ≥ 0       

[12] 

To solve equation [12] one has to find the 
saddle point of the Lagrange function: 

  𝐿𝑝(𝑤, 𝑏, 𝛼) =  
1

2
𝑤𝑇 ∙ 𝑤

− ∑(𝛼𝑖𝑦𝑖( 〈𝑤 ∙ 𝑥𝑖〉 + 𝑏) − 1)

𝑚

𝑖=1

 

     [13] 

where Lagrange multipliers  𝛼𝑖  ≥ 0 . In 
finding the optimal saddle point the 𝐿𝑝 should 

be maximised with respect to the dual feature 

𝛼𝑖 and minimized with respect to the optimal 
features 𝑤 and  . The 𝐿𝑝 is then transformed 

into a dual Lagrangian 𝐿𝐷(𝛼): 
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  min
𝛼

𝐿𝐷(𝛼) =  ∑ 𝛼𝑖

𝑚

𝑖=1

− 
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝑥𝑖 ∙ 𝑥𝑗〉   𝑠. 𝑡

𝑚

𝑖,𝑗=1

∶  𝛼𝑖 ≥ 0, 𝑖

= 1, … , 𝑚 𝑎𝑛𝑑 ∑ 𝛼𝑖𝑦𝑖 = 0

𝑚

𝑖=1

 

[14] 

Introducing the generalized the Karush-
Kuhn-Tucker (KKT) constraints and taking 

the derivative with respect to 𝑤 and 𝑏. The 
resulting 𝛼𝑖 for the optimization problem 
ascertains the optimal margin classifier and 
its parameters 𝑤∗ and 𝑏∗. Hence the optimal 
decision hyper-plane 𝑓(𝑥, 𝛼∗, 𝑏∗): 

    𝑓(𝑥, 𝛼∗, 𝑏∗) = ∑ 𝑦𝑖

𝑚

𝑖=1

𝛼𝑖
∗〈𝑥𝑖 ∙ 𝑥〉 + 𝑏∗

−  ∑ 𝑦𝑖

𝑚

𝑖=𝑠𝑣

𝛼𝑖
∗〈𝑥𝑖 ∙ 𝑥〉 +  𝑏∗  

   [15] 

and indicator decision function sign 
[𝑓(𝑥, 𝛼∗, 𝑏∗)]. The optimal margin classifier 
depends exclusively upon the set of vectors 
for which 𝛼𝑖 > 0 , hence the name support 
vectors.  

Now we extend the above concepts to a case 
of non-separable data i.e. the case for which 
equation [15] has no solution. Such a case is 
solved by introducing slack variables               

𝜗𝑖 ≥ 0, 𝑖 = 1, … , 𝑚 . The resulting 
optimization problem  

     min
𝑤,𝑏,𝜗

1

2
𝑤𝑇 𝑤 +  𝐶 ∑ 𝜗𝑖  ,

𝑚

𝑖=1

𝑠𝑡: 𝑦𝑖(〈𝑤 ∙ 𝑥𝑖〉 + 𝑏) + 𝜗𝑖 − 1
≥  0, 𝜗𝑖 ≥ 0                 [16] 

where 𝐶 is the penalty feature on the training 
error and 𝜗𝑖 the slack variable, is solved by 
the Lagrangian approach as in the separable 
scenario. To find the optimal classifier, the 

dual Lagrangian 𝐿𝐷(𝛼), 

 max
𝛼

𝐿𝐷(𝛼) =  ∑ 𝛼𝑖

𝑚

𝑖=1

−  
1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝑥𝑖 ∙ 𝑥𝑗〉    

𝑚

𝑖,𝑗=1

 

  [17] 

is maximised with respect to 𝛼𝑖under the 
constraints: 

  ∑ 𝛼𝑖

𝑚

𝑖=1

𝑦𝑖 = 0 𝑎𝑛𝑑 0 ≤ 𝛼𝑖 ≤ 𝐶, 𝑖 = 1, … , 𝑚.   [18] 

where upper bound 𝐶 (the penalty 
parameter) is decided by the user. The 
optimal margin classifier is the same as in 
[15]. 

In the case of a nonlinearly separable data 
SVM employs a kernel (or mapping) function 
𝜙 to map the input space of the training 
sample into a feature space of higher-
dimension. To solve the dual Lagrangian 
𝐿𝐷(𝛼) , the kernel function  𝜙 : 

   (𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑗)) ∶= 𝑘(𝑥𝑖 ∙ 𝑥𝑗)         [19] 

replaces the inner products in [17]  giving 
birth to a nonlinear SVM dual Lagrangian:   

 𝐿𝐷(𝛼) = ∑ 𝛼𝑖 − 

𝑚

𝑖=1

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘〈𝑥𝑖 ∙ 𝑥𝑗〉,

𝑚

𝑖,𝑗=1

𝑠𝑡: ∑ 𝛼𝑖

𝑚

𝑖=1

𝑦𝑖 = 0 𝑎𝑛𝑑 0 ≤ 𝛼𝑖

≤ 𝐶, 𝑖 = 1, … , 𝑚.                 [20]   

     

Employing the same approach of solving the 
optimization model in the separable 
scenario, the resulting optimal decision 
function is: 

  𝑓(𝑥) =  𝑠𝑔𝑛 ( ∑ 𝑦𝑖𝛼𝑖
∗𝑘〈𝜙(𝑥𝑖) ∙ 𝜙(𝑥𝑗)〉 + 𝑏∗  

𝑚

𝑖=1

)   

=  𝑠𝑔𝑛 (∑ 𝑦𝑖𝛼𝑖
∗𝑘(𝑥𝑖 . 𝑥𝑗) + 𝑏∗ 

𝑚

𝑖=1

)  

      [21]      

Classification accuracy depends on the 
kernel parameters which should be properly 
set by the user.  
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2.4 Random Forest 

A random forest is an ensemble learning 
technique of classification where the 
classifier takes the form of a collection of 
tree-structures 

                                                       
{ℎ(𝕩, Θ𝑘), 𝑘 = 1, …}                                 [22]                                                                                      

Where the random vectors Θ𝑘  are 
independent and identically distributed (iid), 
with each tree registering a decision for the 

most popular category at input 𝕏 and 
output Θ. 

An input random vector 𝕏 ∈ 𝒳 ⊂ ℝ𝑝 is 
observed and with this input the aim is to 
predict the square integral random response 
𝑌 =  ℝ by estimating the regression function: 

𝑚(𝕩) = 𝔼[𝑌|𝕏 = 𝕩]                                 [23]                                                  

The assumption is that there is a training 
data set, D𝑛 = ((𝕏1, 𝑌1), … , (𝕏𝑛, 𝑌𝑛)) which is 
independent and identically distributed. 
Using the data set D𝑛, the following function 

is created: 𝑚𝑛 =  𝒳 → ℝ. In such a case, 
consistency of the regression function 𝑚𝑛 

holds if 𝔼[𝑚𝑛(𝕏) − 𝑚(𝕏)]2 → 0 as n → ∞. 

The mean is calculated over 𝕏 and data set 

D𝑛.  

The random decision forests can be thought 
of as a collection of randomized base 
regression trees  

  {𝑟𝑛(𝕩, Θ𝑚, D𝑛), 𝑚 ≥ 1}                            [24]                                                  

Where Θ𝑘 are independent and identically 
distributed random vectors.  

 𝑟𝑛(𝕩, Θ𝑗, D𝑛)  =   ∑
𝕝𝕏𝑖∈𝐴𝑛(𝕩,Θ𝑗,D𝑛)𝑌𝑖

𝑁𝑛(𝕩, Θ𝑗, D𝑛)
𝑖∈𝒟𝑛

∗ (Θ𝑗)

        

[25] 

Where 𝒟𝑛
∗ (Θ𝑗) is the training data set. 

𝐴𝑛(𝕩; Θ𝑗, 𝒟𝑛) is the cell containing input 

random vector 𝕩 and 𝑁𝑛(𝕩; Θ𝑗, 𝒟𝑛) being the 

number of points selected in 𝐴𝑛(𝕩; Θ𝑗, 𝒟𝑛). 

The trees are then combined to form the 
finite forest estimate 

𝑚𝑛(𝕩; Θ1  , … , Θ𝑀, 𝒟𝑛) =
1

𝑀
∑ 𝑚𝑛(𝕩; Θ𝑗 , 𝒟𝑛)     

𝑚

𝑗=1

 

            [26] 

A large number of trees in the forests (M) 
makes sense in an experimental point of 
view, the infinite estimate then becomes  

   𝑚∞,𝑛(𝕩; 𝒟𝑛). = 𝔼Θ[𝑚𝑛(𝕩; Θ𝑗 , 𝒟𝑛)]  

                                                              [27] 

Where 𝔼Θ is the expectation with respect to 
random feature Θ, conditional on 𝒟𝑛. 

2.5 Performance measure 

There are many ways of assessing the 
predictive power of a model i.e. its ability to 
generalise the rules it has learned from the 
training data-set to the validation set. To 
evaluate model performance we compare 
the Area Under Receiver Operating 
Characteristic (AUROC) curve, Gini, and 
Anderson Darling statistic. ROC curve is the 
commonly used tool in evaluating binary 
classification problems. It is a graphical 
representation of the sensitivity against the 
specificity at various threshold settings. The 
larger the AUROC curve the better the 
model. Generally, a very good model would 
have an area of 0.80-0.89. The Gini 
coefficient above 0.6 indicates a good model. 
The Kolmogorov-Smirnov test (KS-test) 
evaluates how well the algorithm model is 
able to classify “good” class from “bad  

2.6 Data description. 

The German credit data set classifies loan 
applicants as good or bad risks. The data set 
consists of 1000 instances with 70% 
accepted and 30% rejected. Each instance 
(or applicant) is described by 20 attributes, 
thirteen categorical features and seven 
numerical. The complete list of attributes is 
summarized in the table below. 

chk_acc_status c  4 Status of an existing checking account. 



ZJST. Vol.13 [2018]                                                                                           Nyoni et al 26 – 34 

31 
 

duration_month 

credit_history 

purpose 

credit_amount 

savings_acc_bond 

p_employment_since  

instalment_pct 

personal_status 

other_debtors_or_grantors  

residence_since 

property_type 

age_in_yrs 

other_instalment_type 

housing_type                   

number_cards_this_bank 

job 

no_people_liable_for_mntnance 

telephone 

foreign_worker  

good_bad 

n 

c 

c 

n 

c 

c 

n 

c 

c 

n 

c 

n 

c 

c 

n 

c 

n 

c 

c 

c 

 

 5 

10 

 

 5 

 5 

 

 5 

 5 

 

4 

 

3 

3 

 

4 

 

2 

2 

2 

Duration of the loan in a month. 

Client’s credit history. 

The purpose of the loan. 

Credit amount. 

Savings account/bonds. 

Client’s present employment since. 

Installment rate in percentage of disposable income. 

Personal status and gender. 

Other debtors/guarantors. 

Present residence since. 

Property. 

Age in years. 

Other installment plans. 

Housing. 

Count of existing credits at this bank. 

Job type. 

Count of people liable for maintenance. 

If the client owns a telephone. 

Foreign worker. 

Risk classification. 

Table 1: List of data set features. Second column: c = categorical, n = numerical variable. 
The third column represents a number of categories for respective variable. 

3.0 Results and Discussion. 

To avoid over fitting (failing to generalize a 
pattern) we perform 10-fold cross validation. 
Only the highly significant variables 
(predictors) were considered in the models.  

 

In evaluating variable importance we employ 
the random forests based plot as shown in 
figure 1 below.  
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 Figure 1: Graph of variable importance.  

The higher decrease in Gini (i.e. low Gini) 
means the variable plays a greater role in 
partitioning the data into the probable 
classes. We select the top 10 most 
significant variables. 

Table 2: Table of model performance.   

Model AUC KS Gini 

Logistic 

Regression 

76.78 42.06 53.56 

Random 

Forest 

78.69 43.81 57.38 

Support 

Vector 

Machine 

(linear) 

75.81 42.22 51.62 

Lasso 

Regression 

80.48 48.90 60.96 

 

 

Using the Area Under the Curve (AUC) it was 
evident that the Lasso regression model 
correctly classified 80% of the instances. 
This high percentage means that the 
regression model is a very good model in 
classifying the credit loans. The Lasso was 
followed by the Random Forest model which 
accounted for 78.69% and tracked by the 
traditional classification model, the logistic 
regression model. It can be clearly seen that 
the machine learning algorithms perform 
better than the traditional model accounting 
up to 4% greater than the traditional model.  
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Figure 2: Model performance by AUROC 
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The ROC curve represents sensitivity (true 
positive rate, TPR) against specificity (false 
positive rate, FPR) corresponding to a 
precise decision threshold. The AUROC 
curve evaluates how well an algorithm can 
distinguish between probable groups (good 
and bad). 

To test if the two classes, the bad loans, and 
good loans, are significantly differentiated by 
the models, a Kolmogorov Smirnov test is 
performed. If they are completely dispersed 
a value of 100 is returned. This then means  

that the higher the score the better the model 
in differentiating the two. It can be seen in 
Table 2 that the Lasso regression accounted 
for the highest Kolmogorov-Smirnov score of 
48.90. The Support Vector Machine, kernel 
being Linear, had a higher Kolmogorov-
Smirnov score than Logistic regression with 
a score of 42.22 versus 42.06 despite turning 
up weaker in terms of the AUC.  

Gini is a measure that evaluates the 
goodness of fit for a binary classification 
model. Like the other tests, the higher the 
value means the better the model. Looking at 
all the evaluation methods it is evident that 
the lasso is superior followed by the random 
forest, then the logistic regression and lastly 
the Support Vector Machine (linear) model.                   

4.0 Conclusion 

The goal of this study was to develop and 
evaluate the classification data mining 
techniques. By analysis, it is concluded that 
the best classifying credit model is the lasso 
regression algorithm. Our results indicate 
that the machine learning techniques 
outperform the traditional method that is the 
logistic regression. The 4% increase may 
yield millions of savings for a financial 
company. We recommend the use of these 
techniques and also the hybrid models may 
be investigated in order to increase the 
performance of the algorithms.  
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