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ABSTRACT 

The solutions of the Schrӧdinger equation with Manning-Rosen plus Yukawa potential (MRYP) have been presented using the 
Pekeris-like approximation of the coulomb term and parametric Nikiforov-Uvarov (NU) method. The bound state energy eigenvalues 
and the corresponding un-normalized eigen functions are obtained in terms of Jacobi polynomials. Also, Yukawa, Manning-Rosen 
and coulomb potentials have been recovered from the mixed potential and their eigen values obtained.The Numerical results are 
computed for some values of n at l=0 with α = 0.01, 0.1, 2 and 5 using python 3.6 programming, and these results could be app lied 
to molecules moving under the influence of MRYP potential as negative energy eigenvalues obtained indicate a bound state system. 
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1 INTRODUCTION 

In quantum mechanics, one of the interesting 
problems is to obtain exact solutions of the 
Schrӧdinger equation. In order to do this, a real 
potential is normally chosen to derive the energy 
eigenvalues and the eigen functions of the 
Schrӧdinger equation.1 These solutions describe 
the particle dynamics in non-relativistic quantum 
mechanics.2 Several authors have studied the 
bound states of the Schrӧdinger equation using 
different potentials and methods. Some of these 
potentials play very important roles in many fields 
of Physics such as Molecular Physics, Solid State 

and Chemical Physics.3 The Manning-Rosen 
potential has been deeply studied and applied in 
quantum systems and Yukawa potential and its 
classes have been studied in Schrodinger 
formalism.4 

The purpose of the present paper is to solve the 
Schrӧdinger equation for the mixed potential 
MRYP using the parametric NU method. The 
paper is organized as follows: After a brief 
introduction in section 1, the NU method is 
reviewed in section 2. In section 3, we solve the 
radial Schrӧdinger equation using the NU 
method. Finally, we discuss our results in section 
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4 and a brief conclusion is then advanced in 
section 5. 

 

2 NIKIFOROV-UVAROV METHOD  

The Nikiforov-Uvarov (NU) method5 is based on 
the solutions of a generalized second-order linear 
differential equation with special orthogonal 
functions. The Schrӧdinger equation and 
Schrӧdinger-like equations of the type as: 

𝜓′′(𝑟) + [𝐸 − 𝑉(𝑟)]𝜓(𝑟) = 0,  (1)  

 

can be solved by this method. To do this equation 
(1) is transformed into equation of 
hypergeometric type with appropriate coordinate 
transformation 𝑠 = 𝑠(𝑟) to get 

𝜓′′(𝑠) +
�̅�(𝑠)

𝜎(𝑠)
𝜓′(𝑠) +

�̅�(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0,    (2) 

To solve equation (2) we can use the parametric 
NU method. The parametric generalization of the 
NU method is expressed by the generalized 
hypergeometric type equation [19] 

𝜓′′(𝑠) +
(𝑐1−𝑐2𝑠)

𝑠(1−𝑐3𝑠)
𝜓′(𝑠) +

1

𝑠2(1−𝑐3𝑠)2
[−𝜖1𝑠2 + 𝜖2𝑠 −

𝜖3]𝜓(𝑠) = 0,   (3)        

                                                        

where𝜎(𝑠) and 𝜎(𝑠) are polynomials at most 
second degree, and 𝜏̅(𝑠) is a first degree 
polynomial. The eigenfunctions (equation 4) and 
corresponding eigenvalues (equation 5) to the 
equation become 

𝜓(𝑠) = 𝑁𝑛𝑠𝑐12(1 −

𝑐3𝑠)
−𝑐12−

𝑐13
𝑐3 𝑃𝑛

(𝑐10−1,
𝑐11
𝑐3

−𝑐10−1)
(1 − 2𝑐3𝑠),                                                              

                                                            (4) 

 

(𝑐2 − 𝑐3)𝑛 + 𝑐3𝑛2 − (2𝑛 + 1)𝑐5 + (2𝑛 + 1)(√𝑐9 +

𝑐3√𝑐8) + 𝑐7 + 2𝑐3𝑐8 + 2√𝑐8𝑐9 = 0,                                               

                                                            (5) 

Where 

𝑐4 =
1

2
(1 − 𝑐1), 𝑐5 =

1

2
(𝑐2 − 2𝑐3), 𝑐6 = 𝑐5

2 +

𝜖1, 𝑐7 = 2𝑐4𝑐5 − 𝜖2, 𝑐8 = 𝑐4
2 + 𝜖3, 𝑐9 = 𝑐3𝑐7 +

𝑐2
2𝑐8 + 𝑐6,  𝑐10 = 𝑐1 + 2𝑐4 + 2√𝑐8, 𝑐11 = 𝑐2 −

2𝑐5 + 2(√𝑐9 + 𝑐3√𝑐8) ,𝑐12 = 𝑐4 + √𝑐8, 

𝑐13 = 𝑐5 − (√𝑐9 + 𝑐3√𝑐8),         (6)   

                                                        

𝑁𝑛is the normalization constant and 𝑃𝑛
(𝛼,𝛽)are the 

Jacobi polynomials. 

 

3. SOLUTIONS OF THE RADIAL PART OF 

SCHRÖDINGER EQUATION WITH MRYP 

POTENTIAL 

 The radial Schrӧdinger equation6 is given as  

 

𝑑2𝑅𝑛𝑙(𝑟)

𝑑𝑟2 +
2𝜇

ћ2 [𝐸 − 𝑉(𝑟) −
𝜆ћ2

2𝜇𝑟2] 𝑅𝑛𝑙(𝑟),           

                                                              (7) 

 

Where 𝜆 = 𝑙(𝑙 + 1) and 𝑉(𝑟) is the potential 
energy function. The Manning-Rosen potential 
(MRP) is given as:  

𝑉(𝑟) = − [
𝐶𝑒−∝𝑟+𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2 ]         (8) 

 

The Yukawa potential (YP) is given as: 

𝑉(𝑟) = −
𝑉𝑜𝑒−∝𝑟

𝑟
,                                     

                                                               (9) 

 

where 𝑉0 is the potential depth of the YP and 𝛼 is 
an adjustable positive parameter. In equation (8) 

𝐶and 𝐷 are constants. The sum of these 
potentials known as MRYP is given as 

𝑉(𝑟) = − [
𝐶𝑒−∝𝑟+𝐷𝑒−2∝𝑟

(1−𝑒−∝𝑟)2 ] −
𝑉0𝑒−∝𝑟

𝑟
         

                                                                (10) 

 

Making the transformation 𝑠 = 𝑒−𝛼𝑟equation (10) 
becomes 

𝑉(𝑠) = − [
𝐶𝑆+𝐷𝑆2

(1−𝑆)2 ] −
∝𝑉0𝑆

1−𝑆
     (11) 

 

Again, applying the transformation 𝑠 = 𝑒−𝛼𝑟 and 
using the Pekeris-type approximation7, we get the 
form that NU method is applicable, equation (7) 
gives a generalized hypergeometric-type 
equation as 

𝑑2𝑅(𝑠)

𝑑𝑠2 +
(1−𝑠)

(1−𝑠)𝑠

𝑑𝑅(𝑠)

𝑑𝑠
+

1

(1−𝑠)2𝑠2
[−(𝛽2 − 𝐹 + 𝐵)𝑠2 +

(2𝛽2 + 𝐴 + 𝐵)𝑠 − (𝛽2)]𝑅(𝑠) = 0,   

                                                             (12) 
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Where 𝜆 = 0, −𝛽2 =
2𝜇𝐸

𝛼2ћ2 , 𝐴 =
2𝜇𝐶

𝛼2ћ2 , 𝐵 =
2𝜇𝑉0

𝛼ћ2 , 𝐹 =
2𝜇𝐷

𝛼2ћ2 ,
1

𝑟
≈

∝

(1−𝑒−∝𝑟)
≈

∝

(1−𝑆)
,     (13)   

  

Comparing equation (12) with equation (3) yields 
the following parameters 

𝑐1 = 𝑐2 = 𝑐3 = 1, 𝑐4 = 0, 𝑐5 = −
1

2
, 𝑐6 =

1

4
+ 𝛽2 +

𝐵 − 𝐹, 𝑐7 = −2𝛽2 − 𝐴 − 𝐵, 𝑐8 = 𝛽2, 𝑐9 =
1

4
− (𝐴 +

𝐹), 𝑐10 = 1 + 2√𝛽2, 𝑐11 = 2 + 2 (√
1

4
− 𝐴 − 𝐹 +

√𝛽2) , 𝑐12 = √𝛽2, 𝑐13 = −
1

2
− (√

1

4
− 𝐴 − 𝐹 +

√𝛽2) , 𝜖1 = 𝛽2 + 𝐵 − 𝐹, 𝜖2 = 2𝛽2 + 𝐴 + 𝐵, 𝜖3 =

𝛽2,         

                                                             (14) 

 

Now using equations (5), (13) and (14) we obtain 
the energy eigen spectrum of the MRYP as 

𝛽2 = [
𝐴+𝐵−(𝑛2+𝑛+

1

2
)−(2𝑛+1)√

1

4
−𝐴−𝐹

(2𝑛+1)+2√
1

4
−𝐴−𝐹

]

2

,  

            (15) 

 

Equation (15) can be solved explicitly and the 
energy eigen spectrum of MRYP becomes 

 

𝐸 =

−
𝛼2ћ2

2𝜇
{[

2𝜇𝐶

∝2ћ2+
2𝜇𝑉0
𝛼ћ2 −(𝑛2+𝑛+

1

2
)−(2𝑛+1)√

1

4
−

2𝜇𝐶

∝2ћ2−
2𝜇𝐷

𝛼2ћ2

(2𝑛+1)+2√
1

4
−

2𝜇𝐶

∝2ћ2−
2𝜇𝐷

𝛼2ћ2

]

2

}            

                                                           (16)                                              

 

We now calculate the radial wave function of the 
MRYP as follows 

The weight function 𝜌(𝑠) is given as [19] 

𝜌(𝑠) = 𝑠𝑐10−1(1 − 𝑐3𝑠)
𝑐11
𝑐3

−𝑐10−1
,       (17) 

          

Using equation (14) we get the weight function as 

𝜌(𝑠) = 𝑠𝑈(1 − 𝑠)𝑉,        (18)  
                                       

Where 𝑈 = 2√𝛽2 and 𝑉 = 2√
1

4
− 𝐴 − 𝐹   

Also we obtain the wave function 𝜒(𝑠) as [19] 

𝜒(𝑠) = 𝑃𝑛

𝑐10−1,
𝑐11
𝑐3

−𝑐10−1
(1 − 2𝑐3𝑠),  (19)     

                                                                                                  

Using equation (14) we get the function χ(s) as 

𝜒(𝑠) = 𝑃𝑛
(𝑈,𝑉)(1 − 2𝑠),    

     (20)                                                                         

Where 𝑃𝑛
(𝑈,𝑉)

 are Jacobi polynomials 

Lastly, 

𝜑(𝑠) = 𝑠𝑐12(1 − 𝑐3𝑠)
−𝑐12−

𝑐13
𝑐3 ,  (21) 

            

  And using equation (14) we get 

𝜑(𝑠) = 𝑠
𝑈

2⁄ (1 − 𝑠)
𝑉−1

2⁄ ,   (22) 
                           

We then obtain the radial wave function from the 
equation [19] 

𝑅𝑛(𝑠) = 𝑁𝑛𝜑(𝑠)𝜒𝑛(𝑠),   (23) 
                   

 As 

𝑅𝑛(𝑠) = 𝑁𝑛𝑠
𝑈

2⁄ (1 − 𝑠)
(𝑉−1)

2⁄ 𝑃𝑛
(𝑈,𝑉)(1 − 2𝑠), 

                                         (24) 

Where 𝑛 is a positive integer and 𝑁𝑛 is the 
normalization constant.
  

4 DISCUSSION: 

We have solved the radial Schrӧdinger equation 
and obtained the energy eigen values for the 
Manning-Rosen plus Yukawa potential (MRYP) in 
equation (16). We calculated the bound state 
energy eigenvalues by variation of the screening 
parameter as shown in Table 1.   

 
Table 1. Energy eigenvalues 𝑬(𝒆𝑽) of the 

               MRYP potential for ђ=µ=1, 𝑽𝟎 = 𝟎. 𝟐, 
               C = -0.1, D = 0.1 with different α  
               values. 
 

𝑛 𝛼 
=  0.01 

𝛼 =  0.1 𝛼 =  2 𝛼 =  5 

1 

2 

3 

4 

5 

6 

7 

−12.05405
− 5.384668 

−3.050450
− 1.970112 

−1.383338 

−1.029612 

−0.800110 

−0.1249999
− 0.086805 

−0.08
− 0.0840500 

−0.093889
− 0.107780 

−0.1250000 

−1.852812
− 4.351249
− 7.850703 

−12.350450 

−17.850312
− 24.350229
− 31.850175 

−12.05405
− 27.67680
− 49.551012 

−77.675648
− 112.050449
− 152.675330 

−199.550253 
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The following cases are considered: 

Case 1: If 𝐶 = 𝐷 = 0 in equation (10), the 
potential turns back into the Yukawa potential 
and equation (16) yields the energy eigen 
values of the Yukawa potential as 

𝐸 = −
ћ2

2𝜇
[

2𝜇𝑉0
ћ2 −∝2(𝑛+1)2

2(𝑛+1)
]

2

,   (25) 

        

Equation (25) is similar to equation (30) obtained 
by Antia et al., 2015  

 

 Case 2: If ∝→ 0, 𝑉0 = 𝑍𝑒2 in equation (25), 
the energy eigen values for Coulomb 
potential becomes 

 E = −
𝑍2𝑒4𝜇

2ћ2𝑛′2    (26) 

      

Where 𝑛′ = 𝑛 + 1 in this case. 

 

 Case 3: If 𝑉0 = 0 the potential in equation 
(10) yields the Manning-Rosen potential with 
energy eigen values given as 

Eq. (27) is also similar to Manning-Rosen 
potential bound state energy obtained by Louis et 
al.4 

 

𝐸 = −
𝛼2ћ2

2𝜇
{[

2𝜇𝐶

∝2ћ2−(𝑛2+𝑛+
1

2
)−(2𝑛+1)√

1

4
−

2𝜇𝐶

∝2ћ2−
2𝜇𝐷

𝛼2ћ2

(2𝑛+1)+2√
1

4
−

2𝜇𝐶

∝2ћ2−
2𝜇𝐷

𝛼2ћ2

]

2

} 

        (27)                                                    

 

5. CONCLUSION: 

We have obtained the energy eigen values and 
the corresponding un-normalized wave function 
using the parametric NU method for the 
Schrӧdinger equation with MRYP. Special cases 
of the potential have also been considered.  
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