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Abstract 
In a classical linear regression model, Liu and Robust Estimators were developed to deal with the problem of multicollinearity and 
outliers respectively. This paper proposes some robust Liu estimators (RLEs) to jointly address the problem of multicollinearity and 
outliers and illustrates the proposed estimators with real life data sets. Based on the performances of these estimators using the 
Mean Square Error criterion, results show that the Robust Liu Estimators perform better than the ordinary least square (OLS), Liu 
estimator and Robust estimators when data sets suffer both problems. Furthermore, it is observed that the M Robust Liu Estimator 
(MRLE) is most efficient when outliers are in the y-direction; and when outliers are in the x or both y and x direction, the LTS Robust 
Liu Estimator (LTSRLE) is most efficient.  
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1. INTRODUCTION 

Consider the standard linear regression 
model in matrix form: 

Y =        Xβ + U                                              (1) 

where X is an n× p matrix of n observations 
of p explanatory variables with full rank, Y is 

a n× 1 vector of dependent variable, β is a 
p× 1 vector of unknown parameters, and U 

is n × 1 vector of error term such that 

E(U) = 0 and E(UU ) =σ2In.  

The Ordinary Least Squares (OLS) 
estimator is the most popularly used 
estimator to estimate the parameters of the 
linear regression model and it is Best Linear 
Unbiased Estimator (BLUE) when all the 
assumptions of classical linear regression 
model are satisfied (Aitken, 1935). The 
estimator is defined as: 

β OLS  = (X ′X)−1X′Y                                      (2) 

The performance of this estimator depends 
on the validity of some assumptions, one of 

which is on the state of the X ′X matrix. If the 

matrix is ill-conditioned due to linear 
relationship among explanatory variables, it 
results into multicollinearity problem. The 
OLS estimator, even though unbiased, has 
large variances and covariances which in 
turn make precise estimation difficult 
(Gujarati, 2003). Consequently, regression 
coefficients may exhibit wrong sign, may be 
statistically insignificant and confidence 
intervals tend to be wider leading to wrong 
conclusion. Several estimators are available 
in literature to circumvent this problem. This 
includes the Ordinary Ridge Regression 
(ORR) estimator proposed by Hoerl and 
Kennard (1970), 

β ORR = (X ′X + KI)−1X′X                             (3)                                       (3) 

where K is the ridge parameter such that 
0≤K≤1. 

Stein (1960) defined another estimator as a 
linear function of the Ordinary Least Square 
(OLS) estimator to still handle 
multicollinearity. This is given as: 

β s = Kβ OLS                                            (4) 
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where 0<K<1. 

Liu (1993) combined the stein estimator with 
ORR estimator to combat multicollinearity. 
Liu estimator (LE) is defined for the biased 
parameter d ∈ (−∞,∞) as follows: 

β LE = (X ′X + I)−1(X′X + dI)β OLS                 (5)                                                         

Another problem that affects the popular 
OLS estimator is the presence of outliers or 
leverage points. Outliers can be in the y or x 
direction or both. Robust regression 
estimators have been developed as an 
alternative to OLS to dampen the influence 
of outliers. Lists of these estimators are the 
M, MM, Least Trimmed Square (LTS), Least 
Absolute Deviation (LAD), Least Median 
Square (LMS) and S estimator.  

Huber (1973) proposed the M estimator and 
is used extensively in analyzing data when 
there is outlier in the y-direction but it is not 
robust with respect to leverage points. The 
M-estimate objective function is 

n n
i i i

i=1 i=1

ˆe y -X β
min ρ =min ρ

s s

  
       

 
             (6)                                                                                                                                       

 

Where s is an estimate of scale often 
formed from linear combination of the 
residuals. The function ρ gives the 
contribution of each residual to the objective 
function.  

Dielman (1984) introduced the LAD 
estimator which minimizes the sum of the 
absolute values of the residuals with respect 
to the coefficient vector β:  

min |yi − xi𝛽 |
n
i=1 .                                    (7)                                                                 

LAD is robust to an outlier in the y-direction. 
However, LAD estimator does not protect 
against outlying x (leverages). 

S estimation is a high breakdown value 
method introduced by Rousseeuw and 
Yohai (1984). It minimizes the dispersion of 

the residuals. The dispersion e1 θ ,… , en(θ ) 
is defined as the solution of:    
1

n
 ρ  

ei

s
 = kn

i=1                                (8)                                                                          

 k is a constant and ρ  
e i

s
 is the residual 

function. 

Yohai (1987) proposed the MM estimator by 
combining the high breakdown value 
estimation and M estimation. This estimator 
estimate the regression parameter using S 
estimation which minimize the scale of the 
residual from M estimation and then 
proceed with M estimation.  

Rousseeuw (1998) introduced LTS 
estimator which is a high breakdown value 
method. LTS regression minimizes the sum 
of trimmed squared residuals. This 
estimator is given as: 

β LTS  = argminQLTS  β          (9) 

where QLTS  β =  ei
2h

i=1   such that e(1)
2 ≤

e(2)
2 ≤ e(3)

2 ≤ ⋯ ≤ e(n)
2  are the  ordered 

squares residuals and h is defined in the 

range 
n

2
+ 1 ≤ h ≤

3n+p+1

4
, with n and p 

being sample size and number of 
parameters respectively. The largest 
squared residuals are excluded from the 
summation in this method, which allows 
those outlier data points to be excluded 
completely. 

In most econometric works, both problems 
jointly exist especially with time series data. 
Holland (1973) proposed robust M-estimator 
for ridge regression to handle the problem 
of multicollinearity and outliers. Samkar and 
Alpu (2010) proposed robust ridge 
regression methods based on M, S, MM 
and GM estimators. Lukman et al (2014) 
combined the ridge regression with some 
robust estimators such as M, MM, LTS, S, 
LAD and LMS estimator to handle these 
problems jointly. Ozlem and Hattice (2009) 
combined the Liu estimator with the M 
estimator to handle both problems.  
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In this study, to circumvent both problems 
jointly, some robust Liu estimators are 
proposed.  

2. MATERIALS AND METHODS 

2.1 Liu Estimator 

The regression model in equation (1) can be 
written in the canonical form as: 

Y=Zα+𝜀         (10) 

where Z=XP, α=P′β. X ′X is symmetric matrix 
such that there exists a p×p orthogonal 

matrix P where P′X ′XP = Ʌ, 
Ʌ=diag(⋋1,… ,⋋p) such that ⋋1>⋋2> ⋯ >⋋𝑝  

(the eigenvalues). The OLS and LIU 
estimators for equation (10) in canonical 
form can be written respectively as: 

α OLS = Ʌ
−1Z′Y           (11) 

and 

α LE = (Ʌ + I)−1(Ʌ + dI) α OLS        (12) 

where d is the biasing parameter. Liu (1993) 
obtained this parameter by minimizing the 
mean square error of Liu estimator. This is 
defined as: 

d =1-σ 
2
 
 

1

⋋i ⋋i +1 

p
i=1

 
α i

2

 ⋋i +1 
2

p
i=1

         (13) 

Where 𝜎 2 and 𝛼  are the mean square error 
and the regression estimates compute via 
OLS respectively. 

2.2. Robust Liu Estimators 

This method combines the liu and robust 
estimators such as M, MM, LTS, LAD to 
handle the problem of multicollinearity and 
outliers/leverage point simultaneously. This 
is supposed to dampen the effects of both 
problems in a classical linear regression 
model. The Robust Liu Estimators based on 
M, MM, LTS and LAD are defined 
respectively as: 

α MRLE = (Ʌ + I)−1(Ʌ + dM I) α M       (14) 

α MMRLE = (Ʌ + I)−1(Ʌ + dMM I) α MM       (15) 

α LTSRLE = (Ʌ + I)−1(Ʌ + dLTS I) α LTS       (16) 

α SRLE = (Ʌ + I)−1(Ʌ + dS I) α S        (17) 

α LADRLE = (Ʌ + I)−1(Ʌ + dLAD I) α LAD       (18) 

where each of the regression estimates and 
the biasing parameters are obtained using 
the robust estimates as alternative to OLS 
estimates. For instance, the robust biasing 
parameter for equation (14) is defined as: 

d M=1-σ M
2
 
 

1

⋋i ⋋i +1 

p
i=1

 
α Mi

2

 ⋋i +1 
2

p
i=1

         (19) 

3. CRITERION FOR COMPARISON 

The mean square error is used to compare 
the estimators together to identify the most 
efficient of them. 

 MSE α OLS  = σ 
2  

1

⋋i

p
i=1                   (20) 

MSE α LE  = σ 
2
 

 ⋋i +d 2

 ⋋i +1 2
P
i=1 +  d −

1 2  
α i

2

 ⋋i +1 2
P
i=1          (21) 

The mean square error of each of the robust 
estimators and robust Liu estimators are 

obtained by replacing 𝜎 2 and 𝛼 𝑖
2 in equation 

(20) and (21) with their respective robust 
version. 

4. NUMERICAL EXAMPLES 

Example 1. Longley data 

To evaluate the performance of these 
estimators, we consider the widely analyzed 
Longley dataset (Longley, 1967). It consists 
of six economic variables related to total 
derived employment from 1947 to 1962. 
The data has been used by some authors to 
explain the effect of multicollinearity on OLS 
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estimator and also to check influential 
points. Aboobacker and Jianbao (2011) 
concluded that the data suffers 
multicollinearity since the condition number 
is 43275. Cook (1977) used the same 
dataset in detecting influential observation 
in a linear regression model using the 
method of Cook’s D and found that cases 5, 
16, 4, 10 and 15 (in this order) were the 
most influential observations. Ayinde et al 
(2015) carried out diagnostic checks on the 
presence of outlier and presented the 
summary as given in Table 1: 

Table 1. Summary of outlier results in   
              terms of standardized residual   
              using Longley data 

Estimators Outliers 

OLS 10 
M 10, 14,15,16 
MM 14,15,16 
S 14,15,16 
LTS 5,14,15,16 

                Source: Ayinde et al, 2015. 

The result revealed that there are outliers in 
the y-direction but no leverage point. Hence, 
it is evident that the dataset suffers both the 
problem of multicollinearity and outlier 
simultaneously. The results of the OLS and 
robust estimators are given in Table 2 while 
that of the Liu and Robust Liu estimators 
are given in Table 3. 

Table 2. Estimates of OLS and robust estimators of Longley data 

Coefficient     OLS    M     MM      LTS      S       LAD 

𝜶 𝟏   0.1548   0.1547   0.1547   0.1547    0.1549      0.1549 

𝜶 𝟐  -0.5494  -0.5496  -0.5495  -0.5458   -0.5448     -0.5503 

𝜶 𝟑   0.8455    0.8156   0.8351    0.7562    0.7092      0.8639 

𝜶 𝟒   1.0138    0.9347   0.9784    0.9897    1.0413      0.9347 

𝜶 𝟓  42.6115  37.3772  40.4433  19.1757   13.2611    33.8234 

𝜶 𝟔 -57.7536 -25.0120 -42.7171 -81.9413  -72.3343   -74.8478 

𝝈 𝟐   225783 97706.63   198916 99874.96 198737.6 249594.16 

MSE 𝜶   17095.12   7397.87 15060.94   7562.04 15047.43 18898.04  

 

Table 3. Estimates of OLS, Liu and Robust Liu estimators of Longley data 

Coefficient     Liu    MRLE   MMRLE  LTSRLE     SRLE LADRLE 

𝜶 𝟏  0.1548    0.1547     0.1547      0.1547     0.1547    0.15490 

𝜶 𝟐 -0.5494   -0.5496   -0.5496     -0.5458    -0.5496   -0.55030 

𝜶 𝟑  0.8455    0.8156    0.8225      0.7520      0.8157    0.86390 

𝜶 𝟒  1.0138     0.9347    0.9481      0.9897      0.9348    0.93470 

𝜶 𝟓 42.5870   37.3557   38.3467    19.1647    37.3698  33.80376 

𝜶 𝟔 -53.7192  -23.2670 -28.1515   -76.2155   -23.3325 -69.61868 
D 0.00045865 0.00017184 0.00058920 0.00016013 0.0017088 0.0002055 

MSE 𝜶   14818.97   6412.16 13054.71     6582.04   13058.91   16395.90 

 

From Table 2 and 3, the regression 
estimates of OLS and Liu are not too 
different except in two of the regression 
estimates, 𝜶 𝟓 and 𝜶 𝟔. However, in terms of 
the mean square error (MSE), Liu estimator 
is preferred. The results of the joint 

estimators of robust Liu estimators are more 
efficient than either the OLS or the Liu 
estimator; they have smaller MSEs. 
Moreover, MRLE is most efficient. 
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Example 2. Portland cement data 

Portland dataset was introduced by Woods 
et al (1932), and has been widely analysed 
by Hald (1952), Hamaker (1962) and 
Kaciranlar et al (1999). The dataset 
contains four explanatory varaiables which 
are tricalcium aluminate (X1), tricalcium 
silicate (X2), tetracalcium aluminoferrite (X3) 
and β-dicalcium silicate (X4). The heat 
evolved after 180 days of curing is the 
dependent variable (Y). The dataset suffers 
multicollinearity since variance inflation 
factors, VIF(X1)=38.496, VIF(X2)=254.423, 
VIF(X3)=46.868 and VIF(X4)=282.513), are 

greater than 10. Mahalanobis distances of 
observation 3 and 10 are 2.4495 and 
2.7353 which revealed that observation 3 
and 10 are leverage. Also, the robust MCD 
distances are 3.6810 and 4.8610. Here, 
there is outlier in the x-direction and no 
outlier in the y-direction.  Consequently, 
multicollinearity and leverage point jointly 
exist in the dataset. 
The results of the OLS and robust 
estimators are given in Table 4 while that of 
the Liu and Robust Liu estimators are given 
in Table 5. 

Table 4. Estimates of OLS and Robust estimators of Portland cement data 

Coefficient OLS     M    MM   LTS     S    LAD 

𝜶 𝟏  1.6373  1.6371  1.6371 1.6377   1.6388  1.6447 

𝜶 𝟐 -0.2097 -0.2032 -0.2027 -0.1806 -0.1831 -0.2147 

𝜶 𝟑  0.9160  0.8905  0.8889 0.8205  0.8255  0.8463 

𝜶 𝟒 -1.8405 -1.8672 -1.8693 -1.9697 -1.9623 -1.9257 

𝝈 𝟐  5.8454  3.2671  5.8342 1.5561  5.8057  6.6564 

MSE 𝜶            0.0638      0.0356         0.0637        0.0170   0.0633        0.0726 
 
 

Table 5. Estimates of OLS, Liu and Robust Liu estimators of Portland cement data 

Coefficient     Liu  MRLE MMRLE  TSRLE  SRLE LADRLE 

𝜶 𝟏 1.63745 1.63677  1.6371  1.6377  1.6388  1.6447 

𝜶 𝟐  -0.2099  -0.2032 -0.2027 -0.1806 -0.1831 -0.2147 

𝜶 𝟑   0.9196   0.8897  0.8881  0.8198  0.8247  0.8456 

𝜶 𝟒  -1.8952  -1.8548 -1.8569 -1.9561 -1.9488 -1.9126 
D   4.1604   0.2934  0.2928  0.2639  0.2659  0.2760 

MSE 𝜶     0.0674   0.0354  0.0631  0.0170  0.0628  0.0719 

 
From Table 4 and 5, it can be seen that the 
regression estimates are not too different 
from each other. However, in terms of MSE 
criterion of the estimators, the LTSRLE, 
MRLE, SRLE and MMRLE, in this order, are 
more efficient than the OLS. Thus, LTSRLE 
is most efficient. 

Example 3. Hussein and Abdalla data 

This dataset was used by Hussein and 
Abdalla (2012) and it covers the products in 
the manufacturing sector of Iraq in the 

period of 1960 to 1990. The variables used 
are the product value in the manufacturing 
sector(Y), value of imported intermediate 
(X1), imported capital commodities (X2) and 
value of imported raw materials (X3). 
Hussein and Abdalla (2012) showed that 
the dataset suffers the problem of 
multicollinearity since VIF(Max)>10. 
Lukman et al (2014) identified case number: 
12, 14, 15, 16, 17, 18, 19, 20 and 21 as 
outliers in the y-direction and also identified 
case number 12, 14 and 15 as leverages. 
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Therefore, outliers exist in the y and x 
direction. 
The results of the OLS and robust 
estimators are given in Table 6 while that of 

the Liu and Robust Liu estimators are given 
in Table 7. 

Table 6. Estimates of OLS and Robust estimator of Hussein and Abdalla data 

Coefficient OLS M MM LTS     S LAD 

𝜶 𝟏  1.3143   1.3948  1.3821  1.3803  1.3807   1.3862 

𝜶 𝟐 -1.5151  -1.8513 -4.9978 -5.7278  -5.8198  -2.5380 

𝜶 𝟑  2.0164   1.7145 -3.6142 -4.9724  -5.2153  -0.2247 

𝝈 𝟐   37736 7851.32 5316.35 4017.17 5297.70 54336.6 

MSE 𝜶            4.7230        0.9827       0.6654        0.5028       0.6631        6.8007  

Table 7. Estimates of OLS, Liu and Robust Liu estimators of Hussein and Abdalla data 

Coefficient    Liu  MRLE MMRLE LTSRLE   SRLE LADRLE 

𝜶 𝟏  1.3143   1.3948  1.3821  1.3803  1.3807  1.3862 

𝜶 𝟐 -1.5151 -1.8513 -4.9977 -5.7277 -5.8197 -2.5382 

𝜶 𝟑  2.0162  1.7144 -3.6138 -4.9719 -5.2147 -0.2250 
D  0.4395  0.3396  0.0758  0.0403  0.0367  8.4843 

MSE 𝜶    4.7225  0.9825  0.6653  0.5027  0.6629  6.8113 

  

From Table 7, it can be seen that LADRLE 
has bigger MSE than other RLEs when 
outliers are in both y and x-direction. Thus, 
the results reveal that Robust Liu estimates 
based on LTSRLE, SRLE and MMRLE, in 
this order, are more efficient and preferred. 
Thus, the LTSRLE is most efficient of them. 

5. CONCLUSION. 

Ordinary Least Square (OLS) estimator and 
Liu estimator (LE) could not perform well in 
the presence of multicollinearity and outliers 
based on MSE criterion. The performances 
of both estimators are not too different. The 
robust Liu estimators except LADRLE 
performed well than their individual 
counterparts (OLS and LIU) when both 
problems exist. Finally, it is observed that 
the MRLE estimator is most efficient when 
the outlier is the y-direction and the LTSRLE 
is also most efficient when the outlier is 
either in the x-direction (leverage) or in both 
y and x-direction. It is therefore important to 
note that the performance of these 
estimators depend on the nature or direction 
of the outliers.  
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